Security Handbook

PowerChute Network Shutdown

990-91316E-001

Publication Date: April, 2025

Schneider Electric IT Corporation Legal Disclaimer

The information presented in this manual is not warranted by the Schneider Electric IT Corporation to be authoritative, error free, or complete. This publication is not meant to be a substitute for a detailed operational and site specific development plan. Therefore, Schneider Electric IT Corporation assumes no liability for damages, violations of codes, improper installation, system failures, or any other problems that could arise based on the use of this Publication.

The information contained in this Publication is provided as is and has been prepared solely for the purpose of evaluating data center design and construction. This Publication has been compiled in good faith by Schneider Electric IT Corporation. However, no representation is made or warranty given, either express or implied, as to the completeness or accuracy of the information this Publication contains.

IN NO EVENT SHALL SCHNEIDER ELECTRIC IT CORPORATION, OR ANY PARENT, AFFILIATE OR SUBSIDIARY COMPANY OF SCHNEIDER ELECTRIC IT CORPORATION OR THEIR RESPECTIVE OFFICERS, DIRECTORS, OR EMPLOYEES BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL, OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS, CONTRACT, REVENUE, DATA, INFORMATION, OR BUSINESS INTERRUPTION) RESULTING FROM, ARISING OUT, OR IN CONNECTION WITH THE USE OF, OR INABILITY TO USE THIS PUBLICATION OR THE CONTENT, EVEN IF SCHNEIDER ELECTRIC IT CORPORATION HAS BEEN EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SCHNEIDER ELECTRIC IT CORPORATION RESERVES THE RIGHT TO MAKE CHANGES OR UPDATES WITH RESPECT TO OR IN THE CONTENT OF THE PUBLICATION OR THE FORMAT THEREOF AT ANY TIME WITHOUT NOTICE.

Copyright, intellectual, and all other proprietary rights in the content (including but not limited to software, audio, video, text, and photographs) rests with Schneider Electric IT Corporation or its licensors. All rights in the content not expressly granted herein are reserved. No rights of any kind are licensed or assigned or shall otherwise pass to persons accessing this information.

This Publication shall not be for resale in whole or in part.

Table of Contents

Overview1	
Content and Purpose of this Guide	
Connectivity	
Authentication 2 Password Requirements 2 Account Lock-Out 2 User Control 2 NMC Connection 3 Firewalls 3	
External PowerChute Environment	
PowerChute Network Shutdown - Communication/Access Model 4	
PowerChute License	
Java Runtime Environment (JRE)	
Secure Backup Recommendations	
Vulnerability Reporting and Management	
Security Updates and Notifications	
Security Hardening and Removal Guidelines9)
Security Hardening Guidelines	

Secure Removal Guidelines
Appendix 1: Replacing the Default PowerChute SSL Certificate
Windows
Linux
Appendix 2: Adding a Trusted Certificate to PowerChute for NMC Communication
Windows
Linux
Appendix 3: Adding the VxRail Manager Root CA Cert to PowerChute Change the PowerChute-keystore Password
Appendix 4: Adding the VxRail Manager SSL Certificate to PowerChute
Appendix 5: Reset the PowerChute Virtual Appliance Root Password
Appendix 6: CIS Benchmark Compliance of the PowerChute Virtual Appliance

Overview

Content and Purpose of this Guide

This guide documents the security features in PowerChute Network Shutdown including connectivity and authentication, as well as information on secure deployment and hardening guidelines.

Connectivity

PowerChute Access

The PowerChute user interface (UI) is accessible via a web browser and supports TLS v1.2 or 1.3 which provides authentication and encrypted communication for sensitive communications.

NOTE: When TLS is enabled, your browser displays a small lock icon.

PowerChute provides secured browser access via HTTPS as default to ensure that communication via the web interface is secure and cannot be intercepted. You have the option to select HTTP but this is not recommended for secure deployment.

PowerChute uses a self-signed SSL Certificate by default that has a 4096-bit RSA public key, and uses the SHA-256 Signature Hash Algorithm. See **Appendix 1: Replacing the Default PowerChute SSL Certificate** for details on how to replace SSL certificates for Windows and Linux.

If enabled and configured, PowerChute can be accessed via SNMP v1 or v3. It is recommended to use SNMPv3 which provides authentication and encryption. In SNMPv1, the community name is transferred over the network in plain text; it is not encrypted.

Network Management Card Connection

The UPS Network Management Card (NMC) provides an interface between your APC UPS and your network. To establish communications between PowerChute and the NMC, PowerChute access and the chosen communication protocol (HTTP/HTTPS) must be enabled on the NMC.

In NMC2 firmware version 6.8.0 and higher, and NMC3 firmware version v1.1.0.16 and higher, the NMC uses the HTTPS protocol by default. For NMC2 firmware versions prior to v6.8.0, HTTP is the default protocol and it is recommended you use HTTPS for secure communications.

The User Name and Authentication Phrase specified in the NMC Web UI must also match the credentials provided in the PowerChute Setup wizard. The default port is 80 for HTTP, and 443 for HTTPS. Do not change this number unless you changed the port being used by your NMC.

The NMC uses a self-signed SSL certificate by default when HTTPS is enabled. You must add the NMC certificate to the PowerChute-keystore, see Appendix 2: Adding a Trusted Certificate to PowerChute for NMC Communication.

NOTE: PowerChute does not validate certificates added to the PowerChute-keystore. PowerChute will continue to trust certificates in the PowerChute-keystore after they have expired or been revoked. It is your responsibility to remove these certificates from the PowerChute-keystore once they are no longer needed.

The NMC sends UPS status updates and information to PowerChute Network Shutdown via UDP packets on port 3052.

For a detailed description on how UPS information is sent over the network and how PowerChute receives NMC updates, see The Communications Process of PowerChute Network Shutdown.

Authentication

During the initial PowerChute setup using the PowerChute Setup Wizard, you must enter a Username, Password and Authentication Phrase. The Username and Password will be used to log on to the PowerChute UI.

The Username and Authentication Phrase are used for authentication between PowerChute and the Network Management Card (NMC) and therefore they must match. The passwords used in PowerChute and the NMC can be different.

Password Requirements

Upon launching the PowerChute Setup Wizard, the Username, Password and Authentication Phrase can be set via the Security Details page. The password requires a minimum 12 and maximum 128 characters in length.

No password or passphrase is stored in PowerChute in plain text. The Username, Password, and Authentication Phrase used to connect with PowerChute are stored in the m11.cfg file using AES-256-bit encryption.

The Username and Password can be reset via the pcnconfig.ini file, and the Authentication Phrase can be reset via the PowerChute UI. For information on how to reset your credentials, see the PowerChute Network Shutdown User Guide.

Administrator access is required on all operating systems to open and edit the pcnsconfig.ini file.

Account Lock-Out

PowerChute will automatically "lock out" after three unsuccessful login attempts (incorrect Username and/ or Password) to prevent brute force password cracking. The unsuccessful login attempts are tracked in the access.log file in the group1 directory.

The account lock-out is isolated to the IP address of the machine where the unsuccessful login attempts originated. Users on a different machine with a different IP address can still attempt to log in to the PowerChute UI.

The account lock-out duration is set to two minutes by default. The lock-out duration and number of invalid login attempts can be modified using the pcnsconfig.ini file. The settings are in the Networking section:

LockoutDuration = 120

LockoutFailCount = 3

User Control

PowerChute allows you to create one administrator account only. This account has a unique log-in username and password enabling full read/write access. Only one session of PowerChute can be active at any time, therefore, users will not be able to log on to the same PowerChute Agent from multiple machines simultaneously.

It is strongly recommended that PowerChute is not made available on a public-facing network segment. This is to ensure secure user control.

To further restrict access, TCP port 6547 (HTTPS) can be blocked using firewall settings to prevent remote access to the UI. The UI can still be accessed locally via https://localhost:6547

NMC Connection

The communications mechanism between the NMC and PowerChute Network Shutdown provides the following security measures:

- Ensuring that user credentials are never sent in plain text.
- PowerChute will only process UDP packets from a trusted Network Management Card.
- · Detecting if a UDP packet has been tampered with in transit.
- · Detecting if a UDP packet has been replayed.

Firewalls

It is recommended you use a well-configured firewall in conjunction with an intrusion prevention system (IPS) to help protect PowerChute against Denial of Service attacks and unauthorized access.

- The firewall can be used to block access from untrusted/external networks and allow access only from trusted subnets.
- The IPS can be used to detect patterns of behavior associated with Denial of Service attacks.

External PowerChute Environment

PowerChute supports single, redundant, parallel and advanced UPS configurations. For more information on supported UPS configurations, please refer to the User Guides available on the Schneider Electric website, and Application Note #186 PowerChute Network Shutdown in Advanced Redundant Setups.

The PowerChute Virtual Appliance

The PowerChute virtual appliance is a virtual machine image with AlmaLinux 9.5 (Teal Serval) OS running PowerChute Network Shutdown v5.2 pre-installed.

It should be used only for running the PowerChute application – do not modify it or use it for any other purpose. Ensure that SSH access to the appliance is disabled, unless it is needed for the purposes of scripting the deployment of the Appliance. See the **Security Hardening and Removal Guidelines** section for more information.

It is strongly recommended to regularly update the AlmaLinux OS libraries of the Virtual Appliance to obtain the latest security updates. See "How to update the Virtual Appliance libraries" in the PowerChute Installation Guide for more information.

When using the PowerChute virtual appliance, you have the option to specify some settings for the appliance using the OVF Deployment Wizard. Some of the configurable settings are the password for the root user and the PowerChute Web UI username and password — configuring these may expose the virtual appliance to VMware vulnerabilities.

NOTE: Setting the PowerChute Web UI username and password via the OVF Deployment Wizard is mandatory. This prevents an unauthorized user from accessing the PowerChute Configuration Wizard without entering valid credentials.

IMPORTANT: Before configuration and deployment of the PowerChute virtual appliance, review VMware Security Advisory 0013.1 3c and 3d and update vSphere and vCenter accordingly.

If you are using an affected vCenter/vSphere version, it is recommended to change the root password **after** the virtual appliance has deployed. For more information, see the **PowerChute Installation Guide**.

On first launch of the appliance, the Virtual Appliance First-Time Configuration Wizard opens if you did not set the root password, network settings, and other settings during the OVF deployment. If you do not provide a password for the root user, or create an alternative user via the Wizard, the root account is disabled and you cannot log into the virtual appliance. It is highly recommended that you set the root password at this step to prevent lockout of the virtual appliance.

NOTE: The OVF properties are not available for deployment directly to an ESXi host. As a result, the PowerChute service is disabled when the virtual appliance is booted because the required PowerChute username and password are not specified pre-deployment. To resolve this issue, follow the steps outlined in FAQ000261450.

External User Credentials

VMware

When VMware support is enabled and PowerChute is configured to protect Hosts that are managed by vCenter Server, a username and password are required. The VMware user account requires certain permissions in order to execute Virtualization Tasks — for a listing of the required permissions for this account, refer to Knowledge Base article FA177822. A service account can be created in vSphere with only the required permissions instead of assigning the Administrator Role to this account — this is considered more secure. For more information on configuring vCenter Server accounts in PowerChute, refer to the VMware User Guide.

Nutanix

When Nutanix support is enabled, to authenticate your connection to the Nutanix Controller Virtual Machine or Cluster, an IP address, Controller VM/Cluster password and AHV Host password are required, or an SSH key file path and its passphrase are required.

NOTE: To connect PowerChute to the Nutanix Controller VM/Cluster, the "nutanix" user account credentials must be used. You cannot use the "admin" user account credentials as this account does not have the necessary permissions for shutdown tasks.

SimpliVity/HyperFlex

When SimpliVity/HyperFlex support is enabled, a username and password are required to authenticate the connection.

NOTES:

- · The default username for SimpliVity is "svtcli".
- For HyperFlex, the local admin account credentials must be provided and not the VMware account credentials to allow graceful shutdown in the event that vCenter Server is unavailable.

Dell VxRail

When VxRail support is enabled, PowerChute connects to VxRail Manager using the same credentials used for vCenter Server.

NOTE: All user credentials are stored in PowerChute using AES-256 bit encryption.

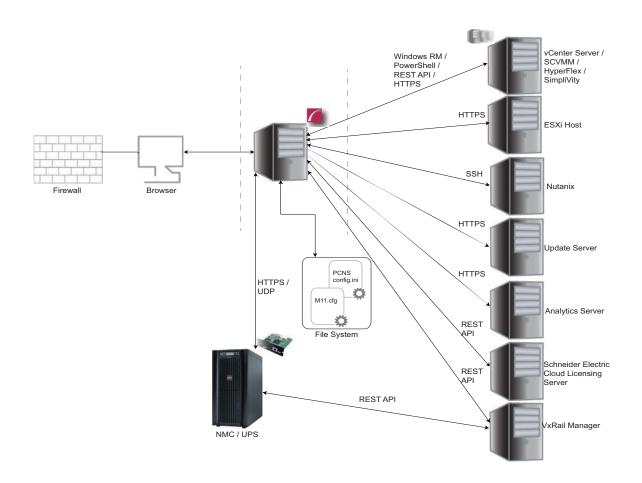
PowerChute Network Shutdown - Communication/Access Model

The diagram below represents the access points to PowerChute Network Shutdown and its communication paths with external components such as VMware vCenter Server and VMware Hosts. PowerChute is primarily accessed via a secure HTTPS connection using a supported web browser (for the latest browser details, see the Operating System, Processor, JRE and Browser Compatibility Chart.

PowerChute uses a self-signed SSL Certificate by default that has a 4096-bit RSA public key, and uses the SHA-256 Signature Hash Algorithm. The default self-signed cert can be replaced (see **Appendix 4** for detailed instructions).

PowerChute communicates with the Network Management Card using HTTPS for registration and control tasks. It receives UDP status updates from the NMC via UDP packets sent to port 3052. For more information on how to harden security for PowerChute and the NMC, refer to Security Hardening Guidelines.

PowerChute stores configuration information on the local file system using the pcnsconfig.ini file and user credentials are stored encrypted in the m11.cfg file. Administrator access is required on all operating systems to access these files.


The Software Updates Notification feature is enabled by default and PowerChute communicates with the Update Server using a secure HTTPS connection. The Updates Server uses an SSL cert that has been signed using a Trusted Third Party Root Certification Authority.

The PowerChute Customer Experience Improvement Program (CEIP), if enabled, sends anonymous configuration and usage data to an Analytics Server using a secure HTTPS connection. This connection is outbound only to TCP port 443 and the Analytics Server uses an SSL cert that has been signed using a Trusted Third Party Root Certification Authority.

PowerChute communicates with the Schneider Licensing Server via HTTPS to validate license information.

PowerChute communicates with Hyper-V/SCVMM via Windows RM, and external VMware components using a secure HTTPS connection, including HyperFlex and SimpliVity. PowerChute communicates with Nutanix using SSH.

PowerChute communicates with VxRail Manager via a REST API over HTTPS to gather version information. The NMC communicates with VxRail Manager via a REST API over HTTPS to shut down the Dell VxRail Cluster.

PowerChute License

License Information

PowerChute Network Shutdown v4.5 and later are licensed products. A license can be purchased through your Schneider Electric IT Partner and is required for PowerChute to function and to perform graceful system shutdown.

Once purchased, you can activate your license in the PowerChute Setup wizard online or offline using mySchneider Software Management. For more information on how to activate your PowerChute license, see the PowerChute Network Shutdown User Guide.

Since PowerChute v5.1, you can avail of a trial license which enables all PowerChute functionalities for a period of 30 days. For more information, see the PowerChute Network Shutdown User Guide.

Connectivity & Authentication

The 3 documented URLs are secured using HTTPS with TLS 1.2, and are signed using a trusted third-party root certificate authority. If you are presented with SSL-related security warnings when attempting to access these websites, you should not enter any login details or proceed.

If you activate your license via the online method, you can provide proxy information if required. The proxy username and password are stored in PowerChute using AES-256 bit encryption. The provided Activation ID is also stored using AES-256 bit encryption.

Java Runtime Environment (JRE)

JRE Utilization

PowerChute Network Shutdown installs a custom JRE to operate. PowerChute is shipped with the latest version of OpenJDK Java at the time of release.

PowerChute uses the following Java modules:

java.base java.compiler
java.desktop java.naming
java.rmi java.management
java.scripting java.instrument
java.security.jgss java.sql

java.xml java.logging jdk.crypto.cryptoki jdk.zipfs

jdk.jdwp.agent

The OpenJDK version can be updated via the Java Update feature in the PowerChute UI when new versions containing security fixes are released. See the PowerChute Network Shutdown User Guide for more information.

For more information on JRE versions included with and supported by PowerChute Network Shutdown, refer to the Operating System, Processor, JRE and Browser Compatibility Chart.

Disabled and Restricted Cryptographic Algorithms

In PowerChute v5.0, the ssl_protocol was removed from the INI configuration as it is more suitably configured by Java Runtime Environment. The purpose of this configuration value was to allow users to specify their preferred SSL Protocol when creating secure connections with collaborating systems.

Restrictions on cryptographic algorithms are configured by editing the <java-home>/conf/security/java.security file within the application JRE folder. This is more efficient for users to manage permitted cryptographic algorithms, and security protocols by PowerChute. For more information on the values and features of JRE security including the use of the java.security file, see the Java Secure Socket Extension (JSSE) Reference Guide.

For more information on configuring the JRE for Deterministic Random Bit Generator (DRBG) compliant random number generation with PowerChute, see FAQ000273740

Secure Backup Recommendations

INI File

All configuration settings applied via the PowerChute Setup Wizard and User Interface are stored on the local file system using the pcnsconfig.ini file. It is recommended to save a copy of this file as a backup.

User credentials are stored using the m11.cfg file and are encrypted using AES-256 bit encryption in v5.2, and backed up using the m11.bak file. User credentials can be reset via the pcnsconfig.ini file. Administrator access is required on Windows and Linux operating systems to access these files.

Vulnerability Reporting and Management

How to report a Vulnerability

Cybersecurity incidents and potential vulnerabilities can be reported via the Schneider Electric website – Report a Vulnerability.

Security Updates and Notifications

Update Notifications

If a security vulnerability is detected in PowerChute that requires a software update, a notification will be sent via the Update Notifications feature providing a web link from where the update can be downloaded. Software updates must be applied manually.

Knowledge Base

Security Bulletins in relation to known vulnerabilities are published on the Schneider Electric Knowledge Base

Software Integrity

All PowerChute Network Shutdown web downloads include a list of SHA-256 hash values that can be validated for authenticity using the SHA-256 Hash Signature Reference Guide. In addition, the Windows installer is digitally signed.

Security Hardening and Removal Guidelines

This section includes recommended configuration changes to increase security for PowerChute communication with the Network Management Card.

Security Hardening Guidelines

Network Management Card

- 1. Change the default Authentication Phrase via **Configuration > Shutdown > PowerChute Shutdown Parameters**. If you are running NMC 2 firmware version v6.8.0+, you are required to set an Authentication Phrase before PowerChute access can be enabled.
- 2. Disable HTTP and enable HTTPS via **Configuration > Network > Web > Access**. **NOTE**: HTTPS is required for Dell VxRail support.
- 3. Create a new SSL certificate for the Network Management Card using the APC Network Management Card Security Wizard v1.0.4, or the NMC Security Wizard CLI Utility. Please refer to the NMC 3 Security Handbook for more information.
- 4. Replace the default self-signed SSL certificate with the new one in **Configuration > Network > Web > SSL Certificate**.
- 5. Ensure that NMC firmware updates are installed to apply the latest security updates and bug fixes.
- 6. Please see the Security Handbooks for the Network Management Cards for more information on how to secure them available here.

PowerChute Network Shutdown

- 1. Change the credentials for the PowerChute-keystore via the pcnsconfig.ini file. See Appendix 1: Replacing the Default PowerChute SSL Certificate.
- 2. During the Setup Wizard, on the Network Management Card connection page, ensure that the protocol used is HTTPS and port is 443.
- 3. Replace the default self-signed SSL certificate for the PowerChute UI using the instructions in Appendix 4: Adding the VxRail Manager SSL Certificate to PowerChute.
- 4. Change the default password for the CACERTS keystore located in the group1 folder using the command: keytool.exe -storepasswd -new <new password> -keystore cacerts storepass changeit
- 5. Prevent Remote Access to the Web UI if this is not required using a firewall rule for TCP ports 3052 and 6547. To prevent Denial of Service attacks such as the SSL/TLS resource exhaustion attack, these ports should be blocked and we do not recommend allowing access to PowerChute on a public facing network interface. Additionally, the firewall should prevent inbound communication with UDP port 3052 except for the Network Management Card that PowerChute is communicating with. The PowerChute UI can still be accessed locally via https://localhost:6547
- Use the Java Update feature in PowerChute to update the JRE regularly as software updates and security fixes are released. See the <u>PowerChute Network Shutdown User Guide</u> for more information.
- Ensure that the Enable Automatic Updates feature is enabled to be informed when PowerChute software updates are available. See the <u>PowerChute Network Shutdown User Guide</u> for more information.

- 8. If using SNMP with PowerChute, it is recommended to only use SNMPv3 and to choose SHA-2 and AES-128 or higher for Authentication and Privacy. It is also recommended to change the default port of 161. Access Control should also be configured to restrict access to PowerChute via SNMP.
- 9. It is recommended you do not use untrusted third-party repositories to download software for the virtual appliance, and to use DNF in preference to YUM when updating system libraries as this is the most recent package management tool.
- 10. If you do not require remote SSH access to the virtual appliance, it is recommended you disable this service. To disable/enable SSH services, issue the following commands as the root user:

```
systemctl stop sshd
systemctl disable sshd
systemctl start sshd
systemctl stop sshd
```

Where access is required, it is recommended that you visit AlmaLinux Security Guides to harden the SSH service. The PowerChute virtual appliance can also be accessed via the VMware Remote Console.

NOTE: Technical Support may require you to copy configuration files and logs for troubleshooting purposes. In this case, you can use the **Export Support Logs** option in the PowerChute user interface. File transfer via SCP is no longer required.

- 11. If you do require remote SSH access to the virtual appliance, it is strongly recommended you perform the following actions:
 - a. update-crypto-policies --set FUTURE
 - b. Create a backup of the crypto-policies file, for example cp /etc/crypto-policies/back-ends/ opensshserver.config /etc/crypto-policies/back-ends/opensshserver.config.old
 - c. Edit /etc/crypto-policies/back-ends/opensshserver.config and delete aes256-cbc. Save the file.
 - d. Edit /etc/ssh/sshd config and change AllowTcpForwarding to No. Save the file.
 - e. Re-start SSH systemctl restart sshd

See also: Appendix 6: CIS Benchmark Compliance of the PowerChute Virtual Appliance

Secure Removal Guidelines

For information on how to uninstall PowerChute Network Shutdown, please refer to the Installation Guide.

If the uninstallation does not successfully complete on Windows operating systems, you must manually delete folders, files and registry keys to completely uninstall PowerChute. For more information, refer to Knowledge Base article FA159895.

Appendix 1: Replacing the Default PowerChute SSL Certificate

NOTE: These steps are only valid for PowerChute v4.5 and above.

Windows

- 1. Stop the PowerChute service.
- 2. Open the PowerChute configuration file (pcnsconfig.ini) and add "KeystorePassword=<new password>" to the [NetworkManagementCard] section.
- 3. Save the pcnsconfig.ini file.
- 4. Re-start the PowerChute service.
- 5. Open a command prompt and change the directory to C:\Program Files\APC\PowerChute\group1\
- 6. Verify that the keystore password was successfully changed using the command: <path_to_jre>\bin\keytool.exe -list -v -keystore keystore -storepass <new_password>
- 7. Stop the PowerChute service.
- 8. Delete the existing self-signed certificate from the keystore using the command: keytool.exe delete -alias securekey -keystore keystore
- 9. Create a root CA cert using the command: openssl req -x509 -sha256 -days 1825 newkey rsa:4096 -keyout rootCA.key -out rootCA.crt
- 10. Create a configuration file for the certificate signing request (req.conf), for example:

```
distinguished name = req distinguished name
req extensions = v3 req
prompt = no
[req distinguished name]
C = IE
ST = Galway
L = Galway
O = PCNS
OU = SANPCNS
CN = <computer name / fully qualified domain name>
[v3 req]
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth
subjectAltName = @alt names
[alt names]
DNS.1 = <fully qualified domain name>
DNS.2 = <host name>
```

```
DNS.3 = localhost
```

- 11. Create the certificate signing request (CSR) using the command: openssl req -new -out pcns_san.csr -newkey rsa:4096 -nodes -sha256 -keyout pcns_san.key config req.conf
- 12.Sign the CSR using the root certificate using the command: openss1 x509 -req -days 365 -in pcns_san.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial -out pcns_san.crt -extfile req.conf -extensions v3_req
- 13. Import the private key to the keystore:
 - a. openssl pkcs12 -export -in pcns_san.crt -inkey pcns_san.key -out
 pcns_san.p12 -name securekey

NOTE: When prompted for the export password, enter the password set for the keystore in step 2. If the private key password and the keystore passwords do not match, the web service will be unable to start with the error "java.security.UnrecoverableKeyException: Cannot recover key".

- b. <path_to_jre>\bin\keytool.exe -importkeystore -deststorepass
 <password> -destkeystore keystore -srckeystore pcns_san.p12 srcstoretype PKCS12
- 14. Add the rootCA.crt into the web browser.

Linux

- 1. Stop the PowerChute service.
- 2. Open the PowerChute configuration file (pcnsconfig.ini) and add "KeystorePassword=<new password>" to the [NetworkManagementCard] section.
- 3. Save the pcnsconfig.ini file.
- 4. Re-start the PowerChute service.
- 5. Open a command prompt and change the directory to /opt/APC/PowerChute/group1
- 6. Verify that the keystore password was successfully changed using the command: ../jre_x64/bin/keytool -list -v -keystore keystore
- 7. Stop the PowerChute service.
- 8. Delete the existing self-signed certificate from the keystore using the command: keytool delete -alias securekey -keystore keystore
- 9. Create a root CA cert using the command: openssl req -x509 -sha256 -days 1825 newkey rsa:4096 -keyout rootCA.key -out rootCA.crt
- 10. Create a configuration file to the certificate signing request (req.conf), for example:

```
lreq]
distinguished_name = req_distinguished_name
req_extensions = v3_req
prompt = no
[req_distinguished_name]
C = IE
ST = Galway
L = Galway
O = PCNS
OU = SANPCNS
CN = <computer_name / fully_qualified_domain_name>
[v3_req]
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
```

```
extendedKeyUsage = serverAuth
subjectAltName = @alt_names
[alt_names]
DNS.1 = <fully_qualified_domain_name>
DNS.2 = <host_name>
DNS.3 = localhost
```

- 11. Create the certificate signing request (CSR) using the command: openssl req -new -out pcns_san.csr -newkey rsa:4096 -nodes -sha256 -keyout pcns_san.key config req.conf
- 12. Sign the CSR using the root certificate using the command: openssl x509 -req -days 365 -in pcns_san.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial -out pcns_san.crt -extfile req.conf -extensions v3_req
- 13. Import the private key to the keystore:
 - a. openssl pkcs12 -export -in pcns_san.crt -inkey pcns_san.key -out
 pcns_san.p12 -name securekey

NOTE: When prompted for the export password, enter the password set for the keystore in step 2. If the private key password and the keystore passwords do not match, the web service will be unable to start with the error "java.security.UnrecoverableKeyException: Cannot recover key".

- b. ../jre_x64/bin/keytool -importkeystore -deststorepass <password> destkeystore keystore -srckeystore pcns san.p12 -srcstoretype PKCS12
- 14. Add the rootCA.crt into the web browser.

Appendix 2: Adding a Trusted Certificate to PowerChute for NMC Communication

When using the HTTPS protocol to communicate with the NMC, you must import the NMC certificate to the PowerChute-keystore. You can import the default self-signed SSL certificate or create a new certificate that has been signed by a Trusted Certificate Authority to upload to the NMC and import that. Your NMC Security Handbook has details on the Security Wizard used to create the Trusted Certificate file with an extension .CRT. This file is then used to create components that can be uploaded to the NMC to replace the default self-signed certificate.

For PowerChute versions prior to v5.1, you can import the NMC certificate to the PowerChute-keystore using the Java keytool application or since v5.1, via the "Certificate Management" feature in the Web UI during NMC registration. See "Certificate Management" under the **Network Management Card Connection** topic in the **PowerChute User Guide** for more information.

To proceed, ensure that the PowerChute-keystore password is updated. In the **Network Management Card** section, add the lines **PowerChuteKeystorePassword = <New password>**

NOTE: PowerChute does not validate certificates added to the PowerChute-keystore. PowerChute will continue to trust certificates in the PowerChute-keystore after they have expired or been revoked. It is your responsibility to remove these certificates from the PowerChute-keystore once they are no longer needed.

Windows

You can use the Java keytool application to import the NMC certificate to the PowerChute-keystore. To export the self-signed certificate from the NMC:

- 1. In a web browser, view the NMC certificate. For example, in Chrome, click > More tools > Developer tools (CTRL+Shift+I). Click on the Security tab and click the View Certificate button.
- 2. Click on the **Details** tab and click the **Copy to File...** button.
- 3. Using the Certificate Export Wizard, export the certificate as a Base-64 Encoded X.509 .cer file.
- 4. Copy the .cer file to the group1 directory: C:\Program Files\APC\PowerChute\group1\

Validate the Certificate in PowerChute-keystore

- Launch a terminal or command prompt and change the directory to the group1 directory of where PowerChute is installed. If the default location was chosen during installation, this will be C:\Program Files\APC\PowerChute\group1\
- 2. Run the command: <path_to_jre>\bin\keytool.exe -list -v -keystore
 PowerChuteKeystore -storepass <keystore_password> -alias
 <nmc_ip_address>
- 3. Search for "Certificate fingerprints" and note the SHA-1 value. For example: SHA1: 2D:94:62:DC:07:61:54:B8:56:D7:B5:71:B0:4B:A0:0A:1D:A8:1D:F5
- 4. Login to your NMC Web UI and navigate to **Configuration > Network > Web > SSL Certificate**.
- 5. Click Valid Certificate to view the certificate details.
- 6. Verify that the SHA-1 fingerprint value matches the value for the certificate in the PowerChute-keystore.

If the SHA-1 values match, set "acceptCerts = false" in the [NetworkManagementCard] section of the pcnsconfig.ini file, and restart the PowerChute service.

If the SHA-1 values do not match, delete the certificate from the PowerChute-keystore using the following command: <path_to_jre>\bin\keytool.exe -delete -alias <nmc_ip_address> - keystore PowerChute-keystore -storepass <keystore password>

Linux

You can use the Java keytool application to import the NMC certificate to the PowerChute-keystore. To export the self-signed certificate from the NMC:

- 1. In a web browser, view the NMC certificate. For example, in Chrome, click > More tools > Developer tools (CTRL+Shift+I). Click on the Security tab and click the View Certificate button.
- 2. Click on the **Details** tab and click the **Copy to File...** button.
- 3. Using the Certificate Export Wizard, export the certificate as a Base-64 Encoded X.509 .cer file.
- 4. Copy the .cer file to the group1 directory: opt/APC/PowerChute/group1
- 5. Import the certificate using ../jre_x64/bin/keytool -importcert -alias <nmc_ip_address> -keystore PowerChute-keystore -storepass <keystore password> -file <nmc .cer file>

Validate the Certificate in PowerChute-keystore

- 1. Launch a terminal or command prompt and change the directory to the group1 directory of where PowerChute is installed. If the default location was chosen during installation, this will be opt/APC/PowerChute/group1
- 2. Run the command:../jre_x64/bin/keytool -list -v -keystore
 PowerChuteKeystore -storepass <keystore_password> -alias
 <nmc ip address>
- 3. Search for "Certificate fingerprints" and note the SHA-1 value. For example: SHA1: 2D:94:62:DC:07:61:54:B8:56:D7:B5:71:B0:4B:A0:0A:1D:A8:1D:F5
- 4. Login to your NMC Web UI and navigate to **Configuration > Network > Web > SSL Certificate**.
- 5. Click Valid Certificate to view the certificate details.
- 6. Verify that the SHA-1 fingerprint value matches the value for the certificate in the PowerChute-keystore.

If the SHA-1 values match, set "acceptCerts = false" in the [NetworkManagementCard] section of the pcnsconfig.ini file, and restart the PowerChute service.

If the SHA-1 values do not match, delete the certificate from the PowerChute-keystore using the following command: ../jre_x64/bin/keytool -delete -alias <nmc_ip_address> -keystore PowerChute-keystore -storepass <keystore password>

Appendix 3: Adding the VxRail Manager Root CA Cert to PowerChute

NOTES:

- These steps are only valid for PowerChute v4.5. Since v5.0, you can add the VxRail Manager certificates via the PowerChute Setup wizard.
- For VxRail 7.0.320 and above, you only need to import the vCenter Root certificates and not the VxRail Manager certificates.

Change the PowerChute-keystore Password

You must change the PowerChute-keystore password before you can add trusted root certificates to the keystore:

- 1. Stop the PowerChute service.
- 2. Open the PowerChute configuration file (pcnsconfig.ini) located in the group1 directory.
- 3. In the section [NetworkManagementCard], add the line "PowerChuteKeystorePassword = <your password>".
- 4. Save the pcnsconfig.ini file and start the PowerChute service.

Import Trusted Certificate

Follow the steps below to download and import a trusted VxRail root CA certificate to PowerChute:

- 1. Copy the root CA certificate from /etc/vmware-marvin/ssl/rootcert.crt via SCP on the VxRail Manager appliance.
- 2. Export the VxRail Manager server certificate using the VxRail API interface: https://<ip_address>/ rest/vxm/api-doc.html
- 3. Click **Not secure** on the upper left-hand side of the screen, click **Certificate**, click **Details**, and click **Copy to File...** to open a wizard to download the VxRail CA certificate.
- 4. Extract the downloaded files for your operating system.
- 5. Stop the PowerChute service.
- 6. Open a command file prompt and change the directory to /opt/APC/PowerChute/group1
- 7. Import the root CA certificate using the command: ../jre_x64/bin/keytool -importcert -file vxrail.crt -keystore PowerChute-keystore -trustcacerts
- 8. Start the PowerChute service.

Appendix 4: Adding the VxRail Manager SSL Certificate to PowerChute

NOTE: These steps are only valid for PowerChute v4.5. In v5.2, you can add the VxRail Manager certificates via the PowerChute Setup wizard.

- 1. Copy the VxRail Manager SSL certificate (e.g. vxrail.crt) to the machine where PowerChute is installed.
- 2. Stop the PowerChute service.
- 3. Open a command prompt and change the directory to /opt/APC/PowerChute/group1
- **4.** Import the Dell VxRail cert using the command: ../jre_x64/bin/keytool -import -alias vxrail -file vxrail.crt -keystore PowerChute-keystore -alias vxrail

NOTE: The SSL certificate must be imported using the alias "vxrail" or the connection to VxRail will be unsuccessful.

- 5. Start the PowerChute service.
- 6. PowerChute should be using the new signed certificate and you should not be presented with error messages regarding unsigned certificates.

Appendix 5: Reset the PowerChute Virtual Appliance Root Password

Follow the steps below to reset the PowerChute virtual appliance (AlmaLinux) root password. **NOTE:** For screenshots of these steps, please refer to the "Reset PowerChute Virtual Appliance Root Password" section in the **User Guide**.

- 1. Open the VMware console.
- 2. Reboot the virtual appliance.
- 3. Press "e" during the boot process on the grub menu to enter the grub editor.
- 4. Use the arrow keys to move to the end of the line that starts with "linux" and add the following at the end of the line: "rd.break enforcing=0".
- 5. Press Ctrl + X to boot to emergency mode.
- 6. Mount the /sysroot directory with read and write permissions with the command "mount -o rw, remount /sysroot".
- 7. Change the directory environment to /sysroot.
- 8. Use the command "passwd root" to set a new password for the root user. The password must be at least 14 characters in length.
- 9. Exit sysroot by typing the command "exit" and make the file system read-only again by typing the command "mount -o ro, remount /sysroot".
- 10. Exit emergency mode and reboot the appliance.
- 11. Login using the new root password.

Appendix 6: CIS Benchmark Compliance of the PowerChute Virtual Appliance

In PowerChute Network Shutdown v5.2 you can use the Open Security Automation Protocol (SCAP) to demonstrate the compliance of the PowerChute Network Shutdown virtual appliance with the Center for Internet Security (CIS) Benchmark Level 2. The benchmark maps the configuration of the appliance to the CIS Critical Security Controls – secure configuration recommendations designed to harden the security posture of the appliance.

Follow the steps below to use OSCAP with the PowerChute virtual appliance (AlmaLinux) to scan the system and view an OSCAP evaluation report.

- 1. Deploy the PowerChute virtual appliance as described in the PowerChute Installation Guide.
- 2. Log in to the PowerChute virtual appliance and navigate to the home directory.
- 3. The virtual appliance must be connected to the internet to use OSCAP. Use standard AlmaLinux OS network management tools to check internet connectivity.
- 4. Run the command:

```
sudo oscap xccdf generate guide
--profile xccdf_org.ssgproject.content_profile_cis
--fetch-remote-resources /usr/share/xml/scap/ssg/content/ssg-almalinux9-
ds.xml > ~/report/security guide.html
```

5. The following output is provided:

```
Downloading: https://security.almalinux.org/oval/org.almalinux.alsa-9.xml.bz2 ... ok
--- Starting Evaluation ---

Title Verify File Hashes with RPM

Rule xccdf_org.ssgproject.content_rule_rpm_verify_hashes

Result pass
...

Title Distribute the SSH Server configuration to multiple files in a config directory.

Rule xccdf_org.ssgproject.content_rule_sshd_use_directory_configuration

Result pass
```

The OpenSCAP Evaluation report is added to the report folder in the directory in which the command was run (~/report/security_guide.html). For more information visit the AlmaLinux9 Open SCAP Guide.

Worldwide Customer Support

Access to customer support terms may vary by product. Customer support is available in the following ways:

- Visit the Schneider Electric web site to access documents in the Schneider Electric Knowledge Base and to submit customer support requests.
 - www.se.com (Corporate Headquarters)
 Connect to localized Schneider Electric sites for specific countries, each of which provides customer support information.
 - www.se.com/support/
 Global support searching Schneider Electric Knowledge Base and using e-support.
- Contact the Schneider Electric Customer Support Center by telephone or e-mail.
 - Local, country specific centers: go to **www.se.com/support** for contact information.

For information on how to obtain local customer support, contact the Schneider Electric representative or other distributor from whom you purchased your Schneider Electric product.

As standards, specifications, and designs change from time to time, please ask for confirmation of the information given in this publication.

990-91316E-001 4/2025

^{© 2025} Schneider Electric. All Rights Reserved. Schneider Electric, APC, PowerChute and Network Management Card are trademarks and the property of Schneider Electric SE, its subsidiaries and affiliated companies. All other trademarks are property of their respective owners.