

SUPERSERVER

6037R-72RFT+

USER'S MANUAL

The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com.

Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product.

FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm.

Manual Revision 1.0 Release Date: August 15, 2012

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document.

Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders.

Copyright © 2012 by Super Micro Computer, Inc. All rights reserved.

Printed in the United States of America

Preface

About This Manual

This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the SuperServer 6037R-72RFT+. Installation and maintainance should be performed by experienced technicians only.

The SuperServer 6037R-72RFT+ is a high-end server based on the SC835BTQ-R1K28BP 3U rackmount chassis and the X9DR7-TF+ dual processor serverboard.

Manual Organization

Chapter 1: Introduction

The first chapter provides a checklist of the main components included with the server system and describes the main features of the X9DR7-TF+ serverboard and the SC835BTQ-R1K28BP chassis.

Chapter 2: Server Installation

This chapter describes the steps necessary to install the SuperServer 6037R-72RFT+ into a rack and check out the server configuration prior to powering up the system. If your server was ordered without processor and memory components, this chapter will refer you to the appropriate sections of the manual for their installation.

Chapter 3: System Interface

Refer here for details on the system interface, which includes the functions and information provided by the control panel on the chassis as well as other LEDs located throughout the system.

Chapter 4: System Safety

You should thoroughly familiarize yourself with this chapter for a general overview of safety precautions that should be followed when installing and servicing the SuperServer 6037R-72RFT+.

Chapter 5: Advanced Serverboard Setup

Chapter 5 provides detailed information on the X9DR7-TF+ serverboard, including the locations and functions of connections, headers and jumpers. Refer to this

chapter when adding or removing processors or main memory and when reconfig-

uring the serverboard.

Chapter 6: Advanced Chassis Setup

Refer to Chapter 6 for detailed information on the SC835BTQ-R1K28BP server chassis. You should follow the procedures given in this chapter when installing, re-

moving or reconfiguring SAS/SATA or peripheral drives and when replacing system

power supply units and cooling fans.

Chapter 7: BIOS

The BIOS chapter includes an introduction to BIOS and provides detailed informa-

tion on running the CMOS Setup Utility.

Appendix A: BIOS Error Beep Codes

Appendix B: System Specifications

Notes

Table of Contents

Cha	pter 1 Introduction	
1-1	Overview	1-1
1-2	Serverboard Features	1-2
	Processors	1-2
	Memory	1-2
	SAS	1-2
	Serial ATA	1-2
	PCI Expansion Slots	1-2
	Rear I/O Ports	1-3
1-3	Server Chassis Features	1-3
	System Power	1-3
	SAS/SATA Subsystem	1-3
	Front Control Panel	1-3
	Cooling System	1-3
1-4	Contacting Supermicro	1-5
Cha	pter 2 Server Installation	
2-1	Overview	2-1
2-2	Unpacking the System	2-1
2-3	Preparing for Setup	2-1
	Choosing a Setup Location	2-1
	Rack Precautions	2-2
	Server Precautions	2-2
	Rack Mounting Considerations	2-3
	Ambient Operating Temperature	2-3
	Reduced Airflow	2-3
	Mechanical Loading	2-3
	Circuit Overloading	2-3
	Reliable Ground	2-3
2-4	Installing the System into a Rack	2-4
	Installing the Inner Rack Rails	2-4
	Installing the Outer Rack Rails	2-5
	Installing the Chassis into a Rack	2-6
Cha	pter 3 System Interface	
3-1	Overview	3-1
3-2	Control Panel Buttons	3-1
	Reset	3-1

	Power	3-1
3-3	Control Panel LEDs	3-2
	Power Fail	3-2
	Overheat/Fan Fail:	3-2
	NIC1	3-2
	NIC2	3-2
	HDD	3-3
	Power	3-3
3-4	Drive Carrier LEDs	3-3
Chap	oter 4 System Safety	
4-1	Electrical Safety Precautions	4-1
4-2	General Safety Precautions	4-2
4-3	ESD Precautions	4-3
4-4	Operating Precautions	4-4
Chap	oter 5 Advanced Serverboard Setup	
5-1	Handling the Serverboard	5-1
	Precautions	5-1
	Unpacking	5-1
5-2	Connecting Cables	5-2
	Connecting Data Cables	5-2
	Connecting Power Cables	5-2
	Connecting the Control Panel	5-2
5-3	Rear I/O Ports	5-3
5-4	Installing the Processor and Heatsink	5-4
	Installing an LGA 2011 Processor	5-4
	Installation and Removal of the Heatsink	5-7
5-5	Installing Memory	5-8
	Memory Support	5-8
	DIMM Installation	5-8
5-6	Adding PCI Add-On Cards	5-12
5-7	Serverboard Details	5-13
	X9DR7-TF+ Quick Reference	5-14
5-8	Connector Definitions	5-16
5-9	Jumper Settings	5-22
5-10	Onboard Indicators	5-24
5-11	SATA and SAS Ports	5-25
5-12	Installing Software	5-26
	SuperDoctor III	5-27

Chapter 6 Advanced Chassis Setup 6-1 Static-Sensitive Devices 6-1 Precautions 6-1 6-2 6-3 Accessing the Inside of the System......6-3 6-4 System Fans 6-4 System Fan Failure 6-4 Replacing System Fans6-4 Air Shroud 6-6 Optional GPU Fan Kit (MCP-320-00046-0N-KIT)......6-6 6-5 Drive Bay Installation/Removal6-6 Accessing the Drive Bays 6-6 6-6 Power Supply 6-10 Power Supply Failure 6-10 Replacing the Power Supply......6-10 Battery Backup6-11 Chapter 7 BIOS 7-1 Starting BIOS Setup Utility......7-1 How To Change the Configuration Data7-2 7-2 7-3 Advanced Setup Configurations......7-4 7-4 7-5 7-6 7-7 Security 7-31 7-8 Appendix A BIOS Error Beep Codes Appendix B System Specifications

Chapter 1

Introduction

1-1 Overview

The SuperServer 6037R-72RFT+ is a high-end server comprised of two main subsystems: the SC835BTQ-R1K28BP 3U chassis and the X9DR7-TF+ dual processor serverboard. Please refer to our web site for information on operating systems that have been certified for use with the system (www.supermicro.com).

In addition to the serverboard and chassis, various hardware components have been included with the 6037R-72RFT+, as listed below:

- Two passive CPU heatsinks (SNK-P0048P)
- Four system fans (FAN-0140L4)
- Two 8-cm exhaust fans (FAN-0125L4)
- One air shroud (MCP-310-39001-0N)
- SAS/SATA Accessories
 One SAS/SATA backplane (BPN-SAS-833TQ)
 Eight drive carriers (MCP-220-00075-0B)
- One CD containing drivers and utilities
- One rackmount kit (MCP-290-00053-0N)
- SuperServer 6037R-72RFT+ User's Manual

Optional (when configured as a GPU system)

- One GPU fan kit (MCP-320-00046-0N-KIT)
- One GPU air shroud (MCP-310-83502-0B)
- Two mid-chassis GPU fans (FAN-0143L4, to replace two of the FAN-0140L4 fans listed above in the Fan 3 and Fan 4 locations)

1-2 Serverboard Features

The SuperServer 6037R-72RFT+ is built around the X9DR7-TF+, a dual processor serverboard based on the Intel C600 chipset and designed to provide maximum performance. Below are the main features of the X9DR7-TF+. (See Figure 1-1 for a block diagram of the chipset).

Processors

The X9DR7-TF+ supports single or dual Intel® Xeon E5-2600 Series processors in LGA 2011 sockets (Socket R). Please refer to the serverboard description pages on our web site for a complete listing of supported processors (www.supermicro.com).

Memory

The X9DR7-TF+ has 24 DIMM slots that can support up to 768 GB of RDIMM, ECC LRDIMM or ECC/non-ECC UDIMM DDR3-1600/1333/1066/800 type memory. Both 1.5V and 1.35V DIMMs are supported. Use of DDR3-1600 depends on memory configuration. See Chapter 5 for details.

SAS

A total of eight SAS ports are provided with an onboard LSI 2208 SAS controller. RAID 0, 1, 5, 6, 10 50 and 60 are supported.

Note: The operating system you use must have RAID support to enable the hotswap capability and RAID function of the SAS drives.

Serial ATA

A SATA controller is also integrated into the chipset to provide two SATA 3 (6/Gbps) and four SATA 2 (3 Gbps) ports, which are RAID 0, 1, 5 and 10 supported. The SATA drives are hot-swappable units. RAID 5 supported with Windows OS only).

Note: The operating system you use must have RAID support to enable the hotswap capability and RAID function of the SATA drives.

PCI Expansion Slots

The X9DR7-TF+ has two PCI-E 3.0 x16 slots and four PCI-E 3.0 x8 slots. Note that both CPUs need to be installed for all PCI slots to be enabled. See Chapter 5 for details.

Rear I/O Ports

The color-coded I/O ports include one COM port, a VGA port, four USB 2.0 ports (additional USB headers are included on the serverboard) and two 10 Gb Ethernet ports. A dedicated IPMI LAN port is also included.

1-3 Server Chassis Features

The following is a general outline of the main features of the SC835BTQ-R1K28BP server chassis.

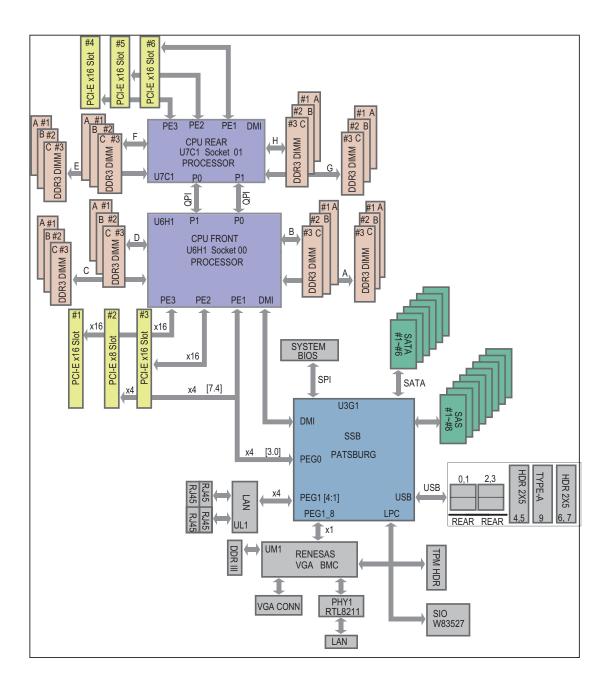
System Power

The SC835BTQ-R1K28BP features a redundant 1280W power supply composed of two separate power modules. This power redundancy feature allows you to replace a failed power supply without shutting down the system.

SAS/SATA Subsystem

The SC835BTQ-R1K28BP supports up to eight SAS or SATA drives. These drives are hot-swappable units and are connected to a backplane that provides power and control.

Front Control Panel


The control panel on the SuperServer 6037R-72RFT+ provides you with system monitoring and control. LEDs indicate system power, HDD activity, network activity, system overheat and power supply failure. The main power button and a system reset button are also located here.

Cooling System

The SC835BTQ-R1K28BP chassis has an innovative cooling design that includes four 8-cm hot-plug system cooling fans located in the middle section of the chassis and two 8-cm exhaust fans. An optional GPU cooling kit includes an air shroud and a fan assembly. The power supply module also includes a cooling fan.

Figure 1-1. Intel C600 Chipset: System Block Diagram

Note: This is a general block diagram. Please see Chapter 5 for details.

1-4 Contacting Supermicro

Headquarters

Address: Super Micro Computer, Inc.

980 Rock Ave.

San Jose, CA 95131 U.S.A.

Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008

Email: marketing@supermicro.com (General Information)

support@supermicro.com (Technical Support)

Web Site: www.supermicro.com

Europe

Address: Super Micro Computer B.V.

Het Sterrenbeeld 28, 5215 ML

's-Hertogenbosch, The Netherlands

Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525

Email: sales@supermicro.nl (General Information)

support@supermicro.nl (Technical Support)

rma@supermicro.nl (Customer Support)

Asia-Pacific

Address: Super Micro Computer, Inc.

4F, No. 232-1, Liancheng Rd.

Chung-Ho Dist., New Taipei City 235

Taiwan

Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3991

Web Site: www.supermicro.com.tw

Technical Support:

Email: support@supermicro.com.tw

Tel: 886-2-8228-1366, ext.132 or 139

Notes

Chapter 2

Server Installation

2-1 Overview

This chapter provides a quick setup checklist to get your SuperServer 6037R-72RFT+ up and running. Following these steps in the order given should enable you to have the system operational within a minimum amount of time. This quick setup assumes that your system has come to you with the processors and memory preinstalled. If your system is not already fully integrated with a serverboard, processors, system memory etc., please turn to the relevant section in Chapter 5 for details on installing specific components.

2-2 Unpacking the System

You should inspect the box the SuperServer 6037R-72RFT+ was shipped in and note if it was damaged in any way. If the server itself shows damage you should file a damage claim with the carrier who delivered it.

Decide on a suitable location for the rack unit that will hold the SuperServer 6037R-72RFT+. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. You will also need it placed near a grounded power outlet. Read the Rack and Server Precautions in the next section.

2-3 Preparing for Setup

The box the SuperServer 6037R-72RFT+ was shipped in should include two sets of rail assemblies, two rail mounting brackets and the mounting screws you will need to install the system into the rack. Follow the steps in the order given to complete the installation process in a minimum amount of time. Please read this section in its entirety before you begin the installation procedure outlined in the sections that follow.

Choosing a Setup Location

 Leave enough clearance in front of the rack to enable you to open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow for sufficient airflow and ease in servicing.

- This product is for installation only in a Restricted Access Location (dedicated equipment rooms, service closets and the like).
- This product is not suitable for use with visual display work place devices according to §2 of the German Ordinance for Work with Visual Display Units.

Warnings and Precautions!

Rack Precautions

- Ensure that the leveling jacks on the bottom of the rack are fully extended to the floor with the full weight of the rack resting on them.
- In single rack installation, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together.
- Always make sure the rack is stable before extending a component from the rack.
- You should extend only one component at a time extending two or more simultaneously may cause the rack to become unstable.

Server Precautions

- Review the electrical and general safety precautions in Chapter 4.
- Determine the placement of each component in the rack before you install the rails.
- Install the heaviest server components on the bottom of the rack first, and then work up.
- Use a regulating uninterruptible power supply (UPS) to protect the server from power surges, voltage spikes and to keep your system operating in case of a power failure.
- Allow any hot plug drives and power supply modules to cool before touching them.
- Always keep the rack's front door and all panels and components on the servers closed when not servicing to maintain proper cooling.

Rack Mounting Considerations

Ambient Operating Temperature

If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the ambient temperature of the room. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra).

Reduced Airflow

Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised.

Mechanical Loading

Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading.

Circuit Overloading

Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Ground

A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.).

2-4 Installing the System into a Rack

This section provides information on installing the SC835 chassis into a rack unit with the quick-release rails provided. There are a variety of rack units on the market, which may mean the assembly procedure will differ slightly. You should also refer to the installation instructions that came with the rack unit you are using.

Installing the Inner Rack Rails

Installing the Inner Rails

- 1. Place the inner rack extensions on the side of the chassis aligning the hooks of the chassis with the rail extension holes.
- 2. Slide the extension toward the front of the chassis.
- 3. Secure the chassis with four screws as illustrated.
- 4. Repeat steps 1-3 for the other inner rail.

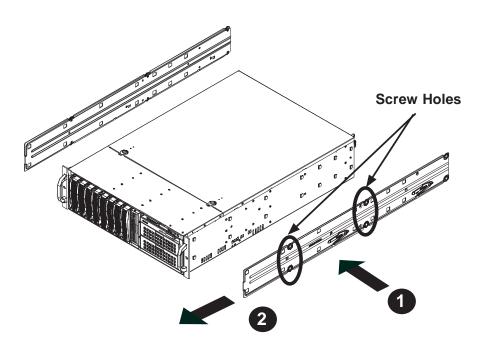


Figure 2-1. Installing the Inner Rack Rails

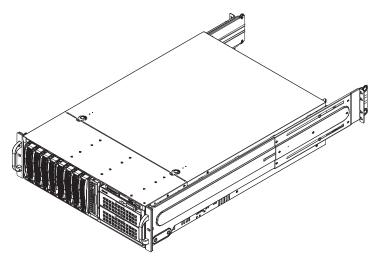


Figure 2-2. Inner Rack Rails Installed

Installing the Outer Rack Rails

Outer rails attach to the server rack and hold the server in place. The outer rails for the SC835 chassis extend between 30 inches and 33 inches.

Installing the Outer Rails

- 1. Begin by measuring the distance from the front rail to the rear rail of the rack
- 2. Attach a short bracket to the front side of the right outer rail and a long bracket to the rear side of the right outer rail.
- 3. Adjust both the short and long brackets to the proper distance so that the rail can fit snugly into the rack.
- 4. Secure the short bracket to the front side of the outer rail with two screws and the long bracket to the rear side of the outer rail with three screws.
- 5. Repeat these steps for the left outer rail.

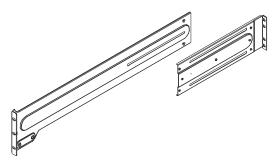


Figure 2-3. Outer Rack Rails

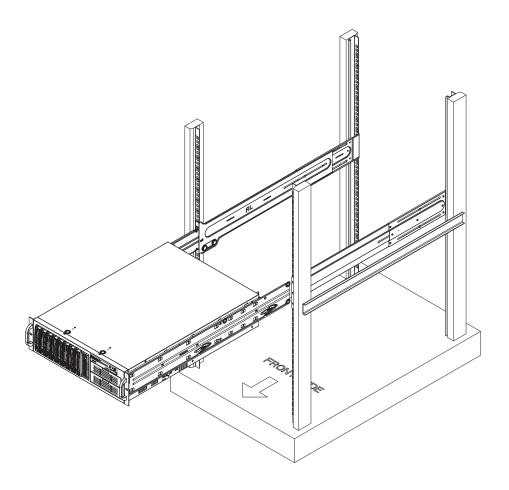


Figure 2-4. Installing the Chassis into the Rack

Installing the Chassis into a Rack

Installing into a Rack

- 1. Confirm that the inner and outer rails are installed on the rack.
- 2. Line chassis rails with the front of the rack rails.
- 3. Slide the chassis rails into the rack rails, keeping the pressure even on both sides (you may have to depress the locking tabs when inserting). When the server has been pushed completely into the rack, you should hear the locking tabs "click" into position.
- 4. (Optional) Insert and tighten the thumbscrews that hold the front of the server to the rack.

Chapter 3

System Interface

3-1 Overview

There are several LEDs on the control panel as well as others on the drive carriers to keep you constantly informed of the overall status of the system as well as the activity and health of specific components. There are also two buttons on the chassis control panel.

3-2 Control Panel Buttons

The two buttons located on the front of the chassis include a reset button and a power on/off button.

Reset

Use the reset button to reboot the system.

Power

This is the main power button, which is used to apply or turn off the main system power. Turning off system power with this button removes the main power but keeps standby power supplied to the system.

3-3 Control Panel LEDs

The control panel located on the front of the chassis has several LEDs. These LEDs provide you with critical information related to different parts of the system. This section explains what each LED indicates when illuminated and any corrective action you may need to take.

Power Fail

Indicates a power supply module has failed. The second power supply module will take the load and keep the system running but the failed module will need to be replaced. Refer to Chapter 6 for details on replacing the power supply. This LED should be off when the system is operating normally.

Overheat/Fan Fail:

When this LED flashes, it indicates a fan failure. When on continuously it indicates an overheat condition, which may be caused by cables obstructing the airflow in the system or the ambient room temperature being too warm. Check the routing of the cables and make sure all fans are present and operating normally. You should also check to make sure that the chassis covers are installed. Finally, verify that the heatsinks are installed properly (see Chapter 5). This LED will remain flashing or on as long as the indicated condition exists.

NIC1

Indicates network activity on the LAN1 port when flashing.

NIC₂

Indicates network activity on the LAN2 port when flashing.

HDD

On the SuperServer 6037R-72RFT+, this LED indicates SATA hard drive and/or DVD-ROM drive activity when flashing.

Power

Indicates power is being supplied to the system's power supply units. This LED should normally be illuminated when the system is operating.

3-4 Drive Carrier LEDs

Each drive carrier has two LEDs:

SAS Drives

- Green: When illuminated, the green LED on the drive carrier indicates the drive is powered on. If this LED is not lit, it means no power is being provided for the drive. Please refer to Chapter 6 for instructions on replacing failed drives.
- Red: A solid red LED indicates a drive failure. If one of the drives fails, you should be notified by your system management software. Please refer to Chapter 6 for instructions on replacing failed drives. If this LED flashes ~ once per second (1 Hz) it indicates RAID rebuilding activity.

SATA Drives

- Green: When illuminated, the green LED on the drive carrier indicates drive activity. A connection to the backplane enables this LED to blink on and off when that particular drive is being accessed.
- Red: The red LED to indicate a drive failure. If one of the drives fails, you should be notified by your system management software. Please refer to Chapter 6 for instructions on replacing failed drives.

Notes

Chapter 4

System Safety

4-1 Electrical Safety Precautions

Basic electrical safety precautions should be followed to protect yourself from harm and the SuperServer 6037R-72RFT+ from damage:

- Be aware of the locations of the power on/off switch on the chassis as well as the room's emergency power-off switch, disconnection switch or electrical outlet. If an electrical accident occurs, you can then quickly remove power from the system.
- Do not work alone when working with high voltage components.
- Power should always be disconnected from the system when removing or installing main system components, such as the serverboard and memory modules.
 When disconnecting power, you should first power down the system with the operating system. The unit has more than one power supply cord. Disconnect both power supply cords before servicing to avoid electrical shock.
- When working around exposed electrical circuits, another person who is familiar
 with the power-off controls should be nearby to switch off the power if necessary.
- Use only one hand when working with powered-on electrical equipment. This
 is to avoid making a complete circuit, which will cause electrical shock. Use
 extreme caution when using metal tools, which can easily damage any electrical
 components or circuit boards they come into contact with.
- Do not use mats designed to decrease static electrical discharge as protection from electrical shock. Instead, use rubber mats that have been specifically designed as electrical insulators.
- The power supply power cords must include a grounding plug and must be plugged into grounded electrical outlets.

- This product may be connected to an IT power system. In all cases, make sure that the unit is also reliably connected to Earth (ground).
- Serverboard Battery: CAUTION There is a danger of explosion if the onboard battery is installed upside down, which will reverse its polarites (see Figure 4-1). This battery must be replaced only with the same or an equivalent type recommended by the manufacturer (CR2032). Dispose of used batteries according to the manufacturer's instructions.
- DVD-ROM Laser: CAUTION this server may have come equipped with a DVD-ROM drive. To prevent direct exposure to the laser beam and hazardous radiation exposure, do not open the enclosure or use the unit in any unconventional way.
- Mainboard replaceable soldered-in fuses: Self-resetting PTC (Positive Temperature Coefficient) fuses on the mainboard must be replaced by trained service technicians only. The new fuse must be the same or equivalent as the one replaced. Contact technical support for details and support.

4-2 General Safety Precautions

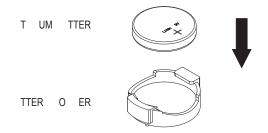
Follow these rules to ensure general safety:

- Keep the area around the 6037R-72RFT+ clean and free of clutter.
- The 6037R-72RFT+ weighs approximately 75 lbs (34 kg.) when fully loaded.
 When lifting the system, two people at either end should lift slowly with their feet spread out to distribute the weight. Always keep your back straight and lift with your legs.
- Place the chassis top cover and any system components that have been removed away from the system or on a table so that they won't accidentally be stepped on.
- While working on the system, do not wear loose clothing such as neckties and unbuttoned shirt sleeves, which can come into contact with electrical circuits or be pulled into a cooling fan.

- Remove any jewelry or metal objects from your body, which are excellent metal
 conductors that can create short circuits and harm you if they come into contact
 with printed circuit boards or areas where power is present.
- After accessing the inside of the system, close the system back up and secure
 it to the rack unit with the retention screws after ensuring that all connections
 have been made.

4-3 ESD Precautions

Electrostatic Discharge (ESD) is generated by two objects with different electrical charges coming into contact with each other. An electrical discharge is created to neutralize this difference, which can damage electronic components and printed circuit boards. The following measures are generally sufficient to neutralize this difference before contact is made to protect your equipment from ESD:


- Use a grounded wrist strap designed to prevent static discharge.
- Keep all components and printed circuit boards (PCBs) in their antistatic bags until ready for use.
- Touch a grounded metal object before removing the board from the antistatic bag.
- Do not let components or PCBs come into contact with your clothing, which may retain a charge even if you are wearing a wrist strap.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

4-4 Operating Precautions

Care must be taken to assure that the chassis cover is in place when the 6037R-72RFT+ is operating to assure proper cooling. Out of warranty damage to the system can occur if this practice is not strictly followed.

Figure 4-1. Installing the Onboard Battery

Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly.

Chapter 5

Advanced Serverboard Setup

This chapter covers the steps required to connect the data and power cables and install add-on cards. All serverboard jumpers and connections are also described. A layout and quick reference chart are included in this chapter for your reference. Remember to completely close the chassis when you have finished working with the serverboard to better cool and protect the system.

5-1 Handling the Serverboard

Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully (see previous chapter). To prevent the serverboard from bending, keep one hand under the center of the board to support it when handling. The following measures are generally sufficient to protect your equipment from electric static discharge.

Precautions

- Use a grounded wrist strap designed to prevent ESD.
- Touch a grounded metal object before removing boards from antistatic bags.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.

Unpacking

The serverboard is shipped in antistatic packaging to avoid electrical static discharge. When unpacking the board, make sure the person handling it is static protected.

5-2 Connecting Cables

Now that the serverboard is installed, the next step is to connect the cables to the board. These include the data cables for the peripherals and control panel and the power cables.

Connecting Data Cables

The cables used to transfer data from the peripheral devices have been carefully routed to prevent them from blocking the flow of cooling air that moves through the system from front to back. If you need to disconnect any of these cables, you should take care to keep them routed as they were originally after reconnecting them (make sure the red wires connect to the pin 1 locations). The following data cables (with their locations noted) should be connected. (See the layout on page 5-10 for connector locations.)

- SATA or SAS drive data cables (I-SATA0 ~ I-SATA5) (SAS0 ~ SAS7)
- Control Panel cable (JF1)
- USB cable for front side access (USB4/5)

Important! Make sure the the cables do not come into contact with the fans.

Connecting Power Cables

The X9DR7-TF+ has a 24-pin primary power supply connector (JPW1) for connection to the ATX power supply. In addition, there are two 8-pin 12V processor power connectors (JPW2 and JPW3) that must be connected to your power supply. See Section 5-9 for power connector pin definitions.

Connecting the Control Panel

JF1 contains header pins for various front control panel connectors. See Figure 5-1 for the pin locations of the various front control panel buttons and LED indicators.

All JF1 wires have been bundled into a single cable to simplify this connection. Make sure the red wire plugs into pin 1 as marked on the board. The other end connects to the Control Panel PCB board, located just behind the system status LEDs on the chassis. See Chapter 5 for details and pin descriptions.

20 Ground NMI 0 x (Key) x (Key) Power On LED 3.3V 0 HDD LED ID/UID/SW/3.3V Stby NIC1 Link LED NIC1 Activity LED NIC2 Link LED NIC2 Activity LED OH/Fan Fail LED Red + (Blue Cathode 0 Power Fail LED 3.3V 0 0 Ground Reset (Button) 0 Ground Power (Button)

Figure 5-1. Control Panel Header Pins

5-3 Rear I/O Ports

The I/O ports are color coded in conformance with the PC 99 specification. See Figure 5-2 below for the colors and locations of the various I/O ports.

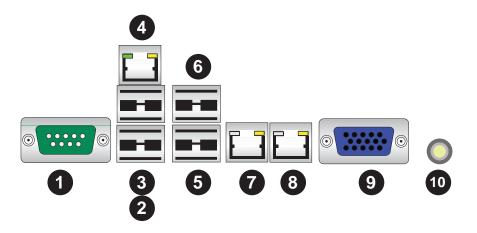
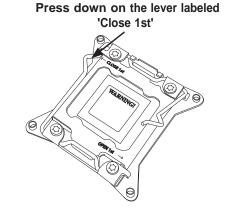
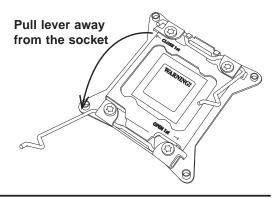


Figure 5-2. Rear I/O Ports

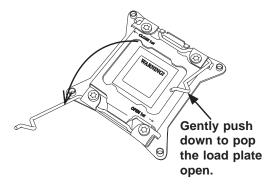
Rear I/O Ports						
1	COM Port 1	6	USB Port 3			
2	USB Port 0	7	10 Gb LAN Port 1			
3	USB Port 1	8	10 Gb LAN Port 2			
4	Dedicated IPMI LAN	9	VGA Port			
5	USB Port 2	10	UID Button			

5-4 Installing the Processor and Heatsink

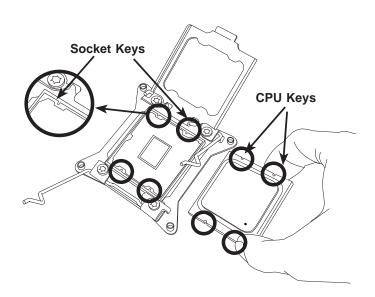

When handling the processor package, avoid placing direct pressure on the label area of the fan.


Notes:

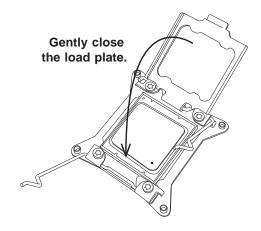
- Always connect the power cord last and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink.
- If you buy a CPU separately, make sure that you use an Intel-certified multidirectional heatsink only.
- Make sure to install the serverboard into the chassis before you install the CPU heatsinks.
- When receiving a serverboard without a processor pre-installed, make sure that
 the plastic CPU socket cap is in place and none of the socket pins are bent;
 otherwise, contact your retailer immediately.
- Refer to the Supermicro web site for updates on CPU support.

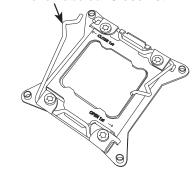

Installing an LGA 2011 Processor

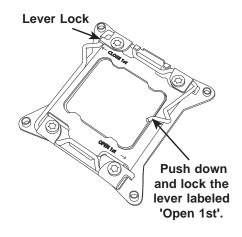

- There are two levers on the LGA2011 socket. First press and release the load lever labeled 'Open 1st'.
- Press the second load lever labeled 'Close 1st' to release the load plate from its locked position.



- With the lever labeled 'Close 1st' fully retracted, gently push down on the 'Open 1st' lever to open the load plate. Lift the load plate to open it completely.
- 4. Using your thumb and the index finger, remove the 'WARNING' plastic cap from the socket.
- Use your thumb and index finger to hold the CPU by its edges. Align the CPU keys, which are semicircle cutouts, against the socket keys.
- 6. Once they are aligned, carefully lower the CPU straight down into the socket. (Do not drop the CPU on the socket. Do not move the CPU horizontally or vertically and do not rub the CPU against any pins of the socket, which may damage the CPU or the socket.)

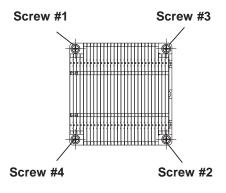





Warning: You can only install the CPU to the socket in one direction. Make sure that the CPU is properly inserted into the socket before closing the load plate. If it doesn't close properly, do not force it as it may damage your CPU. Instead, open the load plate again and double-check that the CPU is aligned properly.

- With the CPU in the socket, inspect the four corners of the CPU to make sure that they are flush with the socket.
- Close the load plate. Lock the lever labeled 'Close 1st', then lock the lever labeled 'Open 1st'. Use your thumb to gently push the load levers down until the lever locks.
- 9. Repeat steps to install to the remaining CPU sockets.

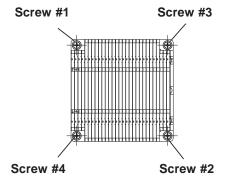
Push down and lock the level labeled 'Close 1st'.



Installation and Removal of the Heatsink

Installing the Heatsink

- Do not apply any thermal grease to the heatsink or the CPU die; the required amount has already been applied.
- 2. Place the heatsink on top of the CPU so that the four mounting holes are aligned with those on the retention mechanism.
- Screw in two diagonal screws (i.e. the #1 and the #2 screws) until just snug (do not over-tighten the screws, which may damage the CPU.)



Uninstalling the Heatsink

Warning: We do not recommend removing the CPU or the heatsink. However, if you do need to uninstall the heatsink, please follow these instructions to avoid damaging the CPU or the CPU socket.

- Unscrew and remove the heatsink screws in the sequence shown in the picture on the right.
- Hold the heatsink as shown in the picture on the right and gently wriggle to loosen it from the CPU. (Do not use excessive force when doing this!)
- Once the heatsink is loosened, remove it from the CPU socket.
- Clean the surface of the CPU and the heatsink to get rid of the old thermal grease. Reapply the proper amount of thermal grease before you re-install the heatsink.

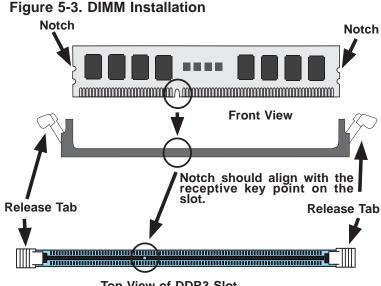
Installing Memory

CAUTION! Exercise extreme care when installing or removing DIMM modules to prevent any possible damage.

Memory Support

The X9DR7-TF+ supports up to 768 GB of ECC registered DDR3-1600/1333/1066/800 SDRAM. Both 1.5V and 1.35V DIMMs are supported. For best performance, install pairs of memory modules of the same type and speed. Please refer to our web site for any updates to supported memory. All channels will run at the fastest common frequency. Memory may not run at the full 1600 MHz with DDR3-1600 DIMMs installed in all 24 slots.

DIMM Installation


Installing Memory Modules

- 1. Insert the desired number of DIMMs into the memory slots starting with P1-DIMMA1. See the Memory Installation Tables below.
- 2. Insert each DIMM module vertically into its slot. Pay attention to the notch along the bottom of the module to avoid installing incorrectly (see Figure 5-3).
- 3. Use your thumbs to gently press down on both ends of the DIMM module until it snaps into place in the slot. Repeat for all modules.
- 4. Press the release tabs to the locked positions to secure the DIMM module into the slot.

To Install: Insert module vertically and press down until it snaps into place. Pay attention to the alignment notch at the bottom.

To Remove:

Use your thumbs to gently push the release tabs near both ends of the module. This should release it from the slot.

Top View of DDR3 Slot

DIMM Module Population Table

Follow the tables below when installing memory.

Pro	Processors and their Corresponding Memory Modules											
CPU#		Corresponding DIMM Modules										
CPU 1 P1-DIMM	A1	A2	A3	B1	B2	ВЗ	C1	C2	C3	D1	D2	D3
CPU2 P2-DIMM	E1	E2	E3	F1	F2	F3	G1	G2	G3	H1	H2	НЗ

	Processor and Memory Module Population			
Number of CPUs+DIMMs	CPU and Memory Population Configuration Table (For memory to work properly, please follow the instructions below.)			
1 CPU & 2 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1			
1 CPU & 4 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1			
1 CPU & 5~8 DIMMs	CPU1 P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1, P1-DIMMA2/P1-DIMMB2, P1-DIMMC2/P1-DIMMD2			
2 CPUs & 4 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1			
2 CPUs & 6 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1, P1-DIMMC1/P1-DIMMD1			
2 CPUs & 8 DIMMs	CPU1 + CPU2 P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1, P1-DIMMC1/P1-DIMMD1, P2- DIMMG1/P2-DIMMH1			
2 CPUs & 9~12 DIMMs	CPU1/CPU2 P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1, P1-DIMMC1/P1-DIMMD1, P2-DIMMG1/P2-DIMMH1, P1-DIMMA2/P1-DIMMB2, P2-DIMME2/P2-DIMMF2			
2 CPUs & 13 DIMMs~24 DIMMs	CPU1/CPU P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1, P1-DIMMC1/P1-DIMMD1, P2-DIMMG1/P2-DIMMH1, P1-DIMMA2/P1-DIMMB2, P2-DIMME2/P2-DIMMF2, P1-DIMMC2/P1-DIMMD2, P2-DIMMG2/P2-DIMMH2, P1-DIMMA3/P1-DIMMB3, P2-DIMME3/P2-DIMMF3, P1-DIMMC3/P1-DIMMD3, P2-DIMMG3/P2-DIMMH3			

Populating UDIMM (ECC/Non-ECC) Memory Modules

Intel E5-2600 Series Processor UDIMM Memory Support-Table							
Ranks Per DIMM & Data Width	Memory Capacity Per DIMM			Speed (MT/s) and Voltage Validated by Slot per Channel (SPC) and DIMM Per Channel (DPC)			
	(See	the Note be	elow)		3 Slots F	Per Chann	nel
				1D	PC	2[PC
				1.35V	1.5V	1.35V	1.5V
SRx8 Non-ECC	1GB	2GB	4GB	NA	1066, 1333	NA	1066, 1333
DRx8 Non-ECC	2GB	4GB	8GB	NA	1066, 1333	NA	1066, 1333
SRx16 Non-ECC	512MB	1GB	2GB	NA	1066, 1333	NA	1066, 1333
SRx8 ECC	1GB	2GB	4GB	1066,	1066, 1333	1066	1066, 1333
DRx8 ECC	2GB	4GB	8GB	1066,	1066, 1333	1066	1066, 1333

Note: For detailed information on memory support and updates, please refer to the SMC Recommended Memory List posted on our website at http://www.supermicro.com/support/resources/mem.cfm.

Populating RDIMM (ECC) Memory Modules

Int	Intel E5-2600 Series Processor RDIMM Memory Support-Table								
Ranks Per DIMM &	Memory Capacity Per DIMM			IM & Per DIMM Channel (SPC) and DIMM Per Channel (Di					
Data Width	(See	the Note Be	elow)		:	3 Slots P	er Chanr	nel	
				10	PC	2D	PC	30	PC
				1.35V	1.5V	1.35V	1.5V	1.35V	1.5V
SRx8	1GB	2GB	4GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	NA	800, 1066
DRx8	2GB	4GB	8GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	NA	800, 1066
SRx4	2GB	4GB	8GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	NA	800, 1066
DRx4	4GB	8GB	16GB	1066, 1333	1066, 1333, 1600	1066, 1333	1066, 1333, 1600	NA	800, 1066
QRx4	8GB	16GB	32GB	800	1066	800	800	NA	NA
QRx8	4GB	8GB	16GB	800	1066	800	800	NA	NA

Note: For detailed information on memory support and updates, please refer to the SMC Recommended Memory List posted on our website at http://www.supermicro.com/support/resources/mem.cfm.

Populating LRDIMM (ECC) Memory Modules

Intel E5-26	Intel E5-2600 Series Processor LRDIMM Memory Support-Table							
Ranks Per DIMM & Data				Speed (MT/s) and Voltage Validated by Slot per Channel (SPC) and DIMM Per Channel (DPC)				
Width				3 Slots Per Ch	annel			
(See the Note Below)			е		1DP0	C and 2DPC	31	OPC
			1.35V	1.5V	1.35V	1.5V		
QRx4 (DDP)	16GB	32GB	1066	1066, 1333	1066	1066		
QRx8 (P)	8GB	16GB	1066	1066, 1333	1066	1066		

Note: For detailed information on memory support and updates, please refer to the SMC Recommended Memory List posted on our website at http://www.supermicro.com/support/resources/mem.cfm.

Other Important Notes and Restrictions

- For the memory modules to work properly, please install DIMM modules of the same type, same speed and same operating frequency on the motherboard.
 Mixing of RDIMMs, UDIMMs or LRDIMMs is not allowed. Do not install both ECC and Non-ECC memory modules on the same motherboard.
- Using DDR3 DIMMs with different operating frequencies is not allowed. All channels in a system will run at the lowest common frequency.

5-6 Adding PCI Add-On Cards

The 6037R-72RFT+ can accommodate one of the following add-on card configurations:

• Five standard size and one half-length add-on cards

or

• Two GPUs, one standard size and one half-length add-on cards

Installing an Add-on Card

- 1. Begin by removing the shield for the PCI slot you wish to populate.
- 2. Fully seat the card into the slot, pushing down with your thumbs evenly on both sides of the card.
- Finish by using a screw to secure the top of the card shield to the chassis.
 The PCI slot shields protect the serverboard and its components from EMI and aid in proper ventilation, so make sure there is always a shield covering each unused slot.

5-7 Serverboard Details

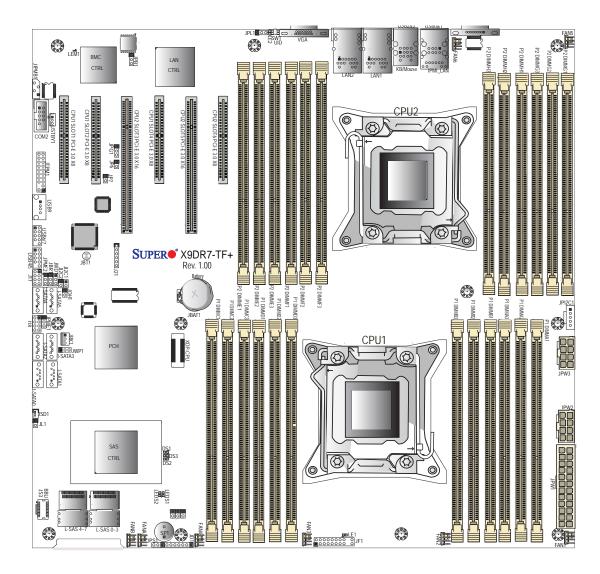


Figure 5-4. X9DR7-TF+ Layout

Notes:

Jumpers not indicated are for test purposes only and should not have their settings changed.

PCI slots are enabled with installed processors. If only a single CPU is installed, some PCI slots will not be enabled. See layout above to determine which PCI slots are controlled by which CPU.

X9DR7-TF+ Quick Reference

Jumper	Descr	iption	Default Setting
JBT1	Clear	CMOS	See Section 5-9
JPB1	BMC I	Enable/Disable	Pins 1-2 (Enabled)
JPG1	VGA E	Enable/Disable	Pins 1-2 (Enabled)
JPL1	GLAN	1/GLAN2 Enable/Disable	Pins 1-2 (Enabled)
JPS1	SAS E	Enable/Disable	Pins 1-2 (Enabled)
JWD1	Watch	Dog Timer	Pins 1-2 (Reset)
Connector		Description	
COM1/COM2		Backplane COM Port1/Front Acc	cessible COM2 Header
FAN1~6, FAN A, F	AN B	CPU/System Fan Headers	
J17/J18		T-SGPIO (Serial Link General P	urpose I/O) Headers
JD1		Speaker/Power LED Indicator	
JF1		Front Panel Control Header	
JIPMB1		4-pin External BMC I ² C Header	(for an IPMI Card)
JL1		Chassis Intrusion Header	
JOH1		Overheat LED Indicator	
JP6		Clock Power Supply I ² C Heade	r
JP7		PAT Power Supply I ² C Header	
JPI ² C1		Power Supply SMBbus I ² C Hea	ider
JPW1		ATX 24-Pin Power Connector	
JPW2/3		12V 8-Pin Power Connectors	
JRK1		RAIDKey	
JS3		Battery Backup Unit for SAS De	vices
JSD1		SATA DOM (Disk on Module) Po	ower Connector
JSTBY1		Standby Header	
JTPM1		TPM (Trusted Platform Module)	Port 80 Header
Keyboard/Mouse		PS2 Keyboard/Mouse (optional)	
LAN1/LAN2		10G-bit Ethernet LAN Ports 1/2	
(IPMI) LAN		Dedicated IPMI LAN	
(I-)SATA 0/1		SATA 3.0 Ports	
(I-)SATA 2~5		SATA 2.0 Ports	
JPW2/JPW3		12V 8-Pin Power Connectors	
JRK1		RAIDKey	
JSD1		SATA DOM (Device On Module)	Power Connector
JSTBY1		Standby Header	

LAN1/3, LAN2/4	G-bit Ethernet Ports 1/3, 2/4
(IPMI) LAN	IPMI Dedicated LAN
SAS 0~3, 4~7	Serial Attached SCSI Ports
SP1	Onboard Buzzer (Internal Speaker)
USB 0/1	Back Panel USB Ports
USB 2/3	Back Panel USB Ports
USB 4/5, USB 6/7	Front Panel Accessible USB Headers
USB 9	Front Panel Type A USB Ports
UID Switch	UID (Unit Identifier) Button
VGA	Backpanel VGA Port

LED	Description	State/Status
LE1	Standby PWR LED	Green On: SB Power On
LE2	UID LED	Blue On/Blinking: Unit Identified (Windows/Linux)
LEM1	BMC Heartbeat LED	Green Blinking: Normal

5-8 Connector Definitions

Power Connectors

A 24-pin main power supply connector (JPW1) and two 8-pin CPU power connectors (JPW2/3) must be connected to the power supply. These power connectors meet the SSI EPS 12V specification. See the table on the right for pin definitions.

Warning: To provide adequate power supply to the motherboard, be sure to connect JPW1 and both JPW2 and JPW3 to the power supply. Failure to do so will void the manufacturer warranty on your power supply and motherboard.

	ATX Power 24-pin Connector Pin Definitions				
Pin#	Definition	Pin#	Definition		
13	+3.3V	1	+3.3V		
14	-12V	2	+3.3V		
15	COM	3	COM		
16	PS_ON	4	+5V		
17	COM	5	COM		
18	COM	6	+5V		
19	COM	7	COM		
20	Res (NC)	8	PWR_OK		
21	+5V	9	5VSB		
22	+5V	10	+12V		
23	+5V	11	+12V		
24	COM	12	+3.3V		

Secondary Power Connector

JPW2 and JPW3 must also be connected to the power supply. See the table on the right for pin definitions.

+12V 8-pin Power Pin Definitions			
Pins	Definition		
1 - 4	Ground		
5 - 8	+12V		

Required Connection

Power Button

The Power On connection is on pins 1 and 2 of JF1. These should be connected to the chassis power button. See p. 5-4 and the table on the right for pin definitions.

Power Button Pin Definitions (JF1)			
Pin#	Definition		
1	Power Signal		
2	Ground		

Reset Button

The Reset Button connection is located on pins 3 and 4 of JF1 and attaches to the reset switch on the computer chassis. See p. 5-4 and the table on the right for pin definitions.

Reset Button Pin Definitions (JF1)				
Pin#	Definition			
3	Reset			
4	Ground			

Power Fail LED

The Power Fail LED connection is located on pins 5 and 6 of JF1. See p. 5-4 and the table on the right for pin definitions.

PWR Fail LED Pin Definitions (JF1)		
Pin#	Definition	
5	Vcc	
6	Ground	

Information LED

Connect an LED to the OH connection on pins 7 and 8 of JF1 for UID and to provide advanced warning of chassis overheating and fan fail. Refer to p. 5-4 and the table on the right for pin definitions. Refer to Chapter 3 for further details on the control panel LED.

OH/Fan Fail/UID LED Pin Definitions (JF1)		
Pin#	Definition	
7	Vcc	
8	Ground	

OH/Fan Fail Indicator Status		
State	Definition	
Off	Normal	
On	Overheat	
Flash- ing	Fan Fail	

NIC2 (JLAN2) LED

The LED connections for JLAN2 are on pins 9 and 10 of JF1. Attach an LED cable to display network activity. See p. 5-4 and the table on the right for pin definitions.

NIC2 LED Pin Definitions (JF1)		
Pin#	Definition	
9	Vcc	
10	Ground	

NIC1 (JLAN1) LED

The LED connections for JLAN1 are on pins 11 and 12 of JF1. Attach an LED cable to display network activity. See p. 5-4 and the table on the right for pin definitions.

NIC1 LED Pin Definitions (JF1)		
Pin#	Definition	
11	Vcc	
12	Ground	

HDD LED

The HDD LED connection is located on pins 13 and 14 of JF1. This LED is used to display <u>all</u> IDE/SAS/SATA activity. See p. 5-4 and the table on the right for pin definitions.

HDD LED Pin Definitions (JF1)		
Pin#	Definition	
13	Vcc	
14	HD Active	

Power On LED

The Power On LED connector is located on pins 15 and 16 of JF1 (use JLED for a 3-pin connector). This connection is used to provide LED indication of power being supplied to the system. See p. 5-4 and the table on the right for pin definitions.

Power LED Pin Definitions (JF1)		
Pin#	Definition	
15	5V Stby	
16	Control	

NMI Button

The non-maskable interrupt button header is located on pins 19 and 20 of JF1. See p. 5-4 and the table on the right for pin definitions.

NMI Button Pin Definitions (JF1)		
Pin#	Definition	
19	Control	
20	Ground	

Fan Headers

There are eight fan headers on the serverboard, all of which are 4-pin fans (Fan 1-Fan 6, Fan A, Fan B). Pins 1-3 of the fan headers are backward compatible with the traditional 3-pin fans. (Fan speed control is supported with 4-pin fans only.) See the table on the right for pin definitions. The onboard fan speeds are controlled by IPMI.

Fan Header Pin Definitions		
Pin#	Definition	
1	Ground (Black)	
2	+12V (Red)	
3	Tachometer	
4	PWR Modulation	

Serial Ports

Two serial ports are included on the serverboard. COM1 is a backpanel port and COM2 is a header located near the PCI-E slot 1. See the table on the right for pin definitions.

Serial Port Pin Definitions (COM1/COM2)			
Pin#	Definition	Pin#	Definition
1	DCD	6	DSR
2	RXD	7	RTS
3	TXD	8	CTS
4	DTR	9	RI
5	Ground	10	NC

Chassis Intrusion

The Chassis Intrusion header is designated JL1. Attach a chassis intrusion cable from the chassis to inform you of a chassis intrusion when the chassis is opened

Chassis Intrusion Pin Definitions		
Pin#	Definition	
1	Intrusion Input	
2	Ground	

Ethernet Ports

Two 10 Gb Ethernet ports are located on the I/O backplane. A dedicated IPMI LAN port is also included to provide KVM support for IPMI 2.0. These ports accept RJ45 type cables.

Internal Speaker

The internal speaker, located at SP1, can be used to provide audible indications for various beep codes. See the table on the right for pin definitions..

Internal Buzzer (SP1) Pin Definition		
Pin#		Definitions
Pin 1	Pos. (+)	Beep In
Pin 2	Neg. (-)	Alarm Speaker

Power LED/Speaker

On the JD1 header, pins 1-3 are for a power LED and pins 4-7 are for the speaker. Close pins 4-7 with a jumper to use an external speaker. If you wish to use the onboard speaker, please close pins 6-7. See the table on the right for speaker pin definitions.

PWR LED Connector Pin Definitions			
Pin Setting	Pin Setting Definition		
Pin 1	Anode (+)		
Pin2	Cathode (-)		
Pin3 NA			
5	14/1		
Spe	aker Connector Pin Settings		
Spe	aker Connector		
Spe	aker Connector Pin Settings		

Overheat/Fan Fail LED

The JOH1 header is used to connect an LED indicator to provide warnings of chassis overheating and fan failure. This LED will blink when a fan failure occurs. Refer to the table on the right for pin definitions.

Overheat LED Pin Definitions	
Pin#	Definition
1	VDC
2	OH Active

OH/Fan Fail LED Status		
State	Message	
Solid	Overheat	
Blinking Fan Fail		

Universal Serial Bus (USB)

Four Universal Serial Bus ports (USB 0/1, USB 2/3) are located on the I/O back panel. Please note that USB 2/3 can also be used for PS2 Keyboard/ Mouse connections. In addition, two USB headers, located close to the IO Hub, provide six front-accessible USB connections (USB 4/5, USB 6/7). One Type A connector (USB9) also supports front panel USB connection. (Cables are not included). See the tables on the right for pin definitions.

Back Panel USB (USB 0/1/2/3)			A USB Ports (USB9)
Pin#	Definitions	Pin#	Definition
1	+5V	1	Vcc
2	PO-	2	Data-
3	PO+	3	Data+
4	Ground	4	Ground
5	N/A	5	NA

USB Header Pin Definitions (USB4/5/6/79)			
USB4/6 USB5/7 Pin # Definition Pin # Definition			
1	+5V	1	+5V
2	PO-	2	PO-
3	PO+	3	PO+
4	Ground	4	Ground
5	N/A	5	Key

T-SGPIO Headers

The SGPIO (Serial General Purpose Input/Output) headers are used to communicate with the enclosure management chip on the backplane. See the table on the right for pin definitions.

T-SGPIO Header Pin Definitions			
Pin#	Definition	Pin	Definition
1	NC	2	NC
3	Ground	4	DATA Out
5	Load	6	Ground
7	Clock	8	NC

NC = No Connection

TPM Header/Port 80

A Trusted Platform Module/Port 80 header is located at JTPM1 to provide TPM support and a Port 80 connection. Use this header to enhance system performance and data security. See the table on the right for pin definitions.

TPM/Port 80 Header Pin Definitions			
Pin#	Definition	Pin #	Definition
1	LCLK	2	GND
3	LFRAME#	4	<(KEY)>
5	LRESET#	6	+5V (X)
7	LAD 3	8	LAD 2
9	+3.3V	10	LAD1
11	LAD0	12	GND
13	SMB_CLK4	14	SMB_DAT4
15	+3V_DUAL	16	SERIRQ
17	GND	18	CLKRUN# (X)
19	LPCPD#	20	LDRQ# (X)

IPMB

A System Management Bus header for IPMI 2.0 is located at JIPMB1. Connect the appropriate cable here to use the IPMB I²C connection on your system.

Power Supply SMBus I²C Header

The power System Management Bus header at JPI²C1 is used to monitor the status of the power supply, fan and system temperature. See the table on the right for pin definitions.

DOM Power Connector

A power connector for SATA DOM (Disk On Module) devices is located at JSD1. Connect an appropriate cable here to provide power support for your DOM devices.

Unit Identifier Switch

The UID Switch is located next to the LAN 2/4 ports on the backplane. The Rear UID LED (LE2) is located next to the UID switch. The control panel UID LED connection is on pins 7/8 of JF1. Connect a cable to pin 8 on JF1 for Front Panel UID LED indication. When you press the UID switch, both the rear UID LED and control panel UID LED indicators will be turned on. Press the UID switch again to turn off both LED Indicators. These indicators provide easy identification of a system unit that may be in need of service.

IPMB Header Pin Definitions		
Pin# Definition		
1	Data	
2	Ground	
3	Clock	
4	No Connection	

PWR SMBus Header Pin Definitions		
Pin#	Pin# Definition	
1	Clock	
2	Data	
3	PWR Fail	
4	Ground	
5	+3.3V	

DOM PWR Pin Definitions		
Pin#	Pin# Definition	
1	+5V	
2	Ground	
3	Ground	

UID Switch		
Pin#	Definition	
1	Ground	
2	Ground	
3	Button In	
4	Ground	

UID LED (LE2) Status		
Color/State Status		
Blue Unit Identifie		

Note: UID can also be triggered via IPMI. For more information on IPMI, please refer to the IPMI User's Guide posted on our Website @http://www.supermicro.com.

5-9 Jumper Settings

Explanation of Jumpers

To modify the operation of the serverboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the serverboard layout pages for jumper locations.

Note: On a two-pin jumper, "Closed" means the jumper is on both pins and "Open" means the jumper is either on only one pin or completely removed.

CMOS Clear

JBT1 is used to clear CMOS (which will also clear any passwords). Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS.

To clear CMOS,

- 1. First power down the system and unplug the power cord(s).
- 2. With the power disconnected, short the CMOS pads with a metal object such as a small screwdriver.
- 3. Remove the screwdriver (or shorting device).
- 4. Reconnect the power cord(s) and power on the system.

Note: <u>Do not use the PW ON connector to clear CMOS</u>.

VGA Enable/Disable

JPG1 allows you to enable or disable the VGA port. The default position is on pins 1 and 2 to enable VGA. See the table on the right for jumper settings.

VGA Enable/Disable Jumper Settings			
Jumper Setting Definition			
Pins 1-2	Enabled		
Pins 2-3 Disabled			

LAN Enable/Disable

JPL1 enables or disables the LAN ports on the motherboard. See the table on the right for jumper settings. The default setting is Enabled.

LAN Enable Jumper Settings		
Jumper Setting Definition		
1-2 Enabled		
2-3 Disabled		

SAS Enable

Jumper JPS1 allows the user to enable onboard LSI SAS support. The default setting is on 1-2 to enable SAS connections 0~3, 4~7. See the table on the right for jumper settings.

SAS Enable Jumper Settings		
Jumper Setting	Definition	
1-2	Enabled (Default)	
2-3	Disabled	

Watch Dog Enable/Disable

Jumper JWD controls the Watch Dog function. Watch Dog is a system monitor that can reboot the system when a software application hangs. Jumping pins 1-2 will cause WD to reset the system if an application hangs. Jumping pins 2-3 will generate a non-maskable interrupt signal for the application that hangs. See the table on the right for jumper settings. Watch Dog must also be enabled in BIOS.

Watch Dog Jumper Settings			
Jumper Setting Definition			
Pins 1-2	Reset		
Pins 2-3	NMI		
Open	Disabled		

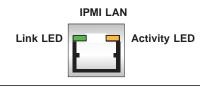
BMC Enable

Jumper JPB1 allows you to enable the embedded the Winbond WP-CM450R BMC (Baseboard Management) Controller to provide IPMI 2.0/KVM support on the motherboard. See the table on the right for jumper settings.

BMC Enable Jumper Settings		
Jumper Setting Definition		
Pins 1-2	BMC Enable	
Pins 2-3	Disable	

5-10 Onboard Indicators

LAN LEDs


The Ethernet ports (located beside the VGA port) have two LEDs. On each port, the yellow LED flashes to indicate activity while the other LED may be green, amber or off to indicate the speed of the connection. See the table on the right for the functions associated with the connection speed LED.

JLAN1/2 LED (Connection Speed Indicator)		
LED Color Definition		
Off	NC or 10 Mbps	
Green	100 Mbps	
Amber	1 Gbps	

IPMI Dedicated LAN LEDs

An additional Dedicated IPMI LAN port is also located on the I/O backplane. The amber LED on the right indicates activity, while the green LED on the left indicates the speed of the connection. See the table at right for more information.

IPMI LAN Link LED (Left) & Activity LED (Right)		
LED Status Definition		
Link	Green: Solid	100 Mbps
Activity Amber: Blinking Active		

Onboard Power LED (LE1)

An Onboard Power LED is located at LE1. This LED Indicator is lit when the system is on. Be sure to unplug the power cable before removing or adding any components. See the table on the right for more details.

Onboard PWR LED Indicator		
LED Color Definition		
Off	System Off (PWR cable not connected)	
Green	System On	
Green: Flashing Quickly	ACPI S1 State	

BMC Heartbeat LED

A BMC Heartbeat LED is located at LEM1 on the motherboard. When blinking, BMC is functioning normally.

BMC Heartbeat LED		
LED Definition		
D1	Blinking: BMC: Normal	

5-11 SATA and SAS Ports

Serial ATA Ports

There are six Serial ATA Ports (I-SATA0~I-SATA 5) located on the motherboard, including four SATA2 ports and two SATA3 ports. These ports provide serial-link signal connections, which are faster than Parallel ATA. See the table on the right for pin definitions.

SATA Port Pin Definitions			
Pin#	Definition	Pin	Definition
1	Ground	2	TXP
3	TXN	4	Ground
5	RXN	6	RXP
7	Ground		


SAS Ports

Eight Serial Attached SCSI ports (SAS 0~3, 4~7) provide serial link connections. These ports are supported by an LSI 2208 ccontroller. See the table on the right for pin definitions.

SAS Port Pin Definitions			
Pin#	Definition	Pin	Definition
1	Ground	2	TXP
3	TXN	4	Ground
5	RXN	6	RXP
7	Ground		

5-12 Installing Software

After the hardware has been installed, you should first install the operating system and then the drivers. The necessary drivers are all included on the Supermicro CDs that came packaged with your motherboard.

Driver/Tool Installation Display Screen

Note: Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents of the CD.

SuperDoctor III

The SuperDoctor® III program is a Web base management tool that supports remote management capability. It includes Remote and Local Management tools. The local management is called SD III Client. The SuperDoctor III program included on the CD-ROM that came with your motherboard allows you to monitor the environment and operations of your system. SuperDoctor III displays crucial system information such as CPU temperature, system voltages and fan status. See the Figure below for a display of the SuperDoctor III interface.

Note: The default User Name and Password for SuperDoctor III is ADMIN / ADMIN.

Note: When SuperDoctor is first installed, it adopts the temperature threshold settings that have been set in BIOS. Any subsequent changes to these thresholds must be made within SuperDoctor, as the SuperDoctor settings override the BIOS settings. To set the BIOS temperature threshold settings again, you would first need to uninstall SuperDoctor.

SuperDoctor Remote Management System Info. | Performance | Remote Control | Configuration | Administration | Systems Management | Report | Help | Health Information Fan Voltage Voltage Voltage Vocre -12V +12V +3.3V

Supero Doctor III Interface Display Screen (Health Information)

Supero Doctor III Interface Display Screen (Remote Control)

Note: The SuperDoctor III program and User's Manual can be downloaded from the Supermicro web site at http://www.supermicro.com/products/accessories/software/SuperDoctorIII.cfm.

For Linux, we recommend using SuperDoctor II.

Chapter 6

Advanced Chassis Setup

This chapter covers the steps required to install components and perform maintenance on the SC835BTQ-R1K28BP chassis. For component installation, follow the steps in the order given to eliminate the most common problems encountered. If some steps are unnecessary, skip ahead to the step that follows.

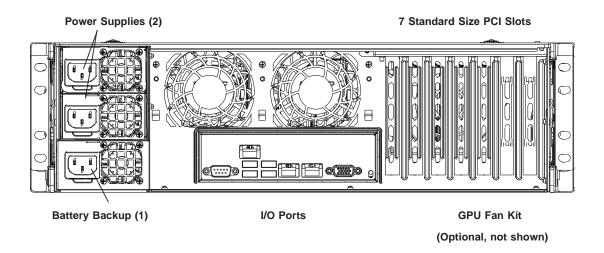
Tools Required: The only tool you will need to install components and perform maintenance is a Philips screwdriver.

6-1 Static-Sensitive Devices

Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. The following measures are generally sufficient to protect your equipment from ESD damage.

Precautions

- Use a grounded wrist strap designed to prevent static discharge.
- Touch a grounded metal object before removing any board from its antistatic bag.
- Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts.
- When handling chips or modules, avoid touching their pins.
- Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use.
- For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard.


Unpacking

The serverboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected.

Slim DVD-ROM Drive (Optional)

SUPERMICE:

Figure 6-1. Front and Rear Chassis Views

6-2 Control Panel

The control panel (located on the front of the chassis) must be connected to the JF1 connector on the serverboard to provide you with system status indications. A ribbon cable has bundled these wires together to simplify the connection. Connect the cable from JF1 on the serverboard to the Control Panel PCB (printed circuit board). Make sure the red wire plugs into pin 1 on both connectors. Pull all excess cabling out of the airflow path. The LEDs inform you of system status.

See Chapter 3 for details on the LEDs and the control panel buttons. Details on JF1 can be found in Chapter 5.

6-3 Accessing the Inside of the System

Performing maintenance on componenets such as fans requires access to the inside of the server system. Follow the steps below to remove the top/left side cover to gain access to the inside of the 6037R-72RFT+.

If the system has been installed to a rack, carefully pull it out on the rails until the top cover is exposed.

- Press the release tabs to remove the cover from the locked position. Press both tabs at the same time. If necessary, you may need to remove the chassis cover screw.
- 2. Once the top cover is released from the locked position, slide the cover toward the rear of the chassis and lift the cover off the unit.

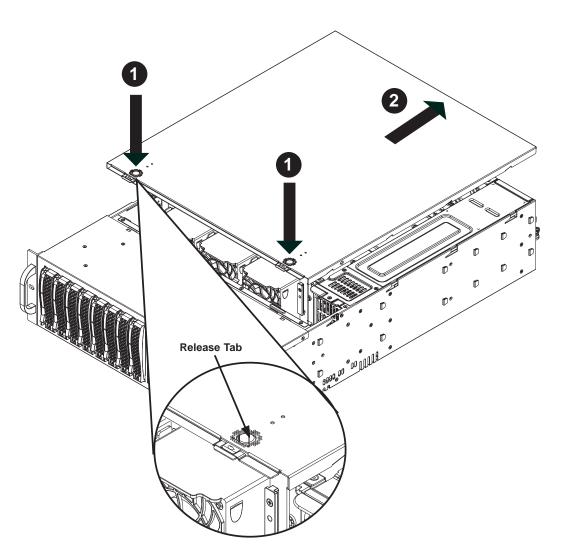


Figure 6-2. Accessing the Inside of the System

6-4 System Fans

Six 8-cm hot-swap fans (two are rear exhaust fans) provide the cooling for the system. It is very important that the chassis top cover is properly installed and making a good seal in order for the cooling air to circulate properly through the chassis and cool the components.

System Fan Failure

Fan speed is controlled by system temperature via a BIOS setting. If a fan fails, the remaining fans will ramp up to full speed and the overheat/fan fail LED on the control panel will turn on. Replace any failed fan at your earliest convenience with the same type and model (the system can continue to run with a failed fan). Remove the top chassis cover while the system is still running to determine which of the fans has failed.

Replacing System Fans

Removing a Fan

System power does not need to be removed since the fans are hot-pluggable. Replace the failed fan with an identical 8-cm 12 volt fan (available from Supermicro).

- 1. Open the chassis and locate the faulty fan. Never run the server for an extended period of time with the chassis open.
- 2. Press the release tab on the fan and pull the fan upward.
- 3. Slide the new fan into the fan housing. Make sure the power connectors are correctly aligned. The new fan will immediately activate.

Installing the Rear Fans

The rear fans must be installed after the serverboard and air shroud setup.

Installing Rear System Fans

- 1. Confirm that the air shroud is correctly placed.
- 2. Slide the rear fan into the slot as illustrated. The fan release tab should be on the side closest to the power supply.
- 3. Make sure that the fan is secure in the fan housing and the housing is correctly connected to the power supply.

Figure 6-3. Adding Optional GPU Fan

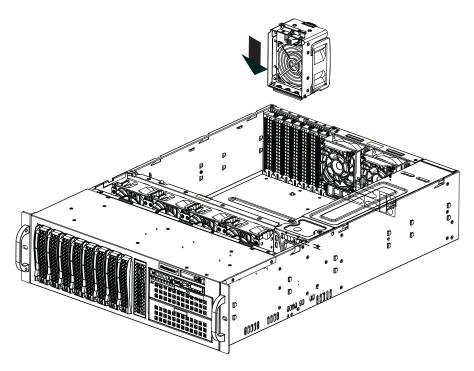
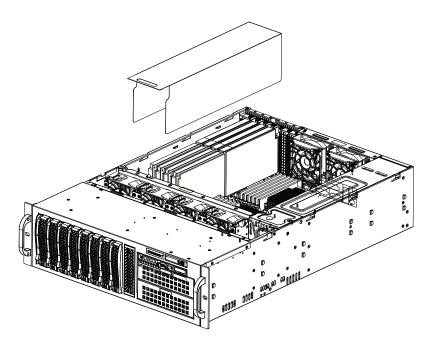



Figure 6-4. Installing the Air Shroud

Air Shroud

Air shrouds concentrate airflow to maximize fan efficiency. The SC835 chassis air shroud does not require screws to set up.

Installing the Air Shroud

- 1. Remove the chassis cover. If necessary, remove the rear fans.
- 2. Place the air shroud in the chassis (see Figure 6-4). The shroud aligns with the fan holders and covers two of the front fans with two of the rear fans. Make sure the air shroud aligns completely with the chassis

Optional GPU Fan Kit (MCP-320-00046-0N-KIT)

Installing the GPU Fan

- 1. Turn off the system and remove the AC power cord from the power supplies.
- 2. Swap out two of the original system fans (Fan 3 and Fan 4, which are the two fans on the left when viewed from the front of the chassis) and replace with two FAN-0143L4 fans.
- Optional GPU fan: screw the fan bracket to the outside of the second through fourth PCI slots from the right (when viewed from the chassis rear). Install the bottom of the fan into the bracket, then tilt the top on the fan up and into the bracket until it clicks into place.
- 4. Run the fan cable from the rear top of the bracket, through the gap provided above the PCI slot, and connect it to the FAN C header.
- 5. Install two power extension cables (CBL-0424L) for GPU support.
- 6. Add the GPUs and GPU air shroud.
- 7. Replace the chassis cover and restore power to the system.

6-5 Drive Bay Installation/Removal

Accessing the Drive Bays

<u>SAS/SATA Drives</u>: You do not need to access the inside of the chassis or remove power to replace or swap SAS/SATA drives. Proceed to the next step for instructions. You must use standard 3.5" SAS/SATA drives in the system.

Note: Refer to the following ftp site for setup guidelines: <ftp://ftp.supermicro.com/driver/SAS/LSI/LSI_SAS_EmbMRAID_SWUG.pdf> and Supermicro's web site for additional information < http://www.supermicro.com/support/manuals/>.

<u>DVD-ROM</u>: For installing/removing the DVD-ROM drive, you will need to gain access to the inside of the server by removing the top cover of the chassis. Proceed to the "DVD-ROM Installation" section later in this chapter for instructions.

Hard Drive Backplane

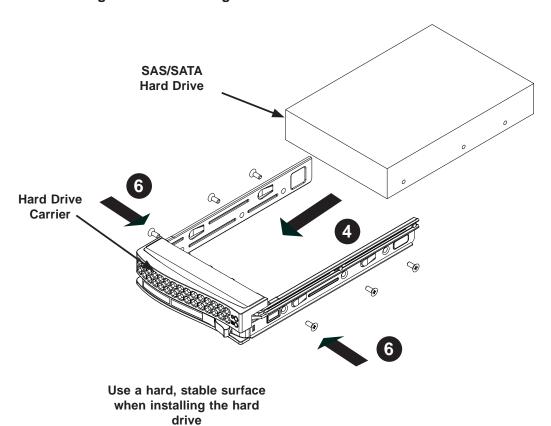
The hard drives plug into a backplane that provides power, drive ID and bus termination. A RAID controller can be used with the backplane to provide data security. The operating system you use must have RAID support to enable the hot-swap capability of the hard drives. The backplane is already preconfigured, so no jumper or switch configurations are required.

SAS/SATA Drive Installation

These drives are mounted in drive carriers to simplify their installation and removal from the chassis. The carriers also help promote proper airflow for the drives. For this reason, even empty carriers without hard drives installed must remain in the chassis.

Installing a Hard Drive (Figures 6-5 and 6-6)

- 1. Remove the two screws securing the dummy drive to the drive tray.
- 2. Lift the dummy drive out of the drive tray.
- Place the hard drive tray on a flat, stable surface such as a desk, table, or work bench.
- 4. Slide the hard drive into the tray with the printed circuit board side facing down.
- 5. Carefully align the mounting holes in the hard drive and the tray. Make sure the bottom of the hard drive and bottom of the hard drive tray are flush.
- 6. Secure the hard drive using all six screws.
- 7. Replace the drive tray into the chassis. Make sure to close the drive tray using the drive tray handle.


Use caution when working around the backplane. Do not touch the backplane with any metal objects and make sure no ribbon cables touch the backplane or obstruct the holes, which aid in proper airflow.

Drive Tray

Release Button

Figure 6-5. Removing the Dummy Drive from the Carrier

Figure 6-6. Installing a SAS or SATA Drive to a Carrier

<u>Important:</u> Regardless of how many hard drives are installed, all drive carriers must remain in the drive bays to maintain proper airflow.

DVD-ROM Drive Installation

The SC835 chassis model supports a slim DVD-ROM drive. Use these instructions in this section in the event that you must replace any of these components.

Installing a DVD-ROM Drive (Figure 6-7)

- 1. Power down and unplug the system
- 2. Remove the chassis cover.
- 3. If you are not installing a new front port panel: remove the mini-bezel from the drive bay The mini-bezel is the small grating that covers the drive bay. Remove this by simply pulling it out of the bay.
 If you are installing a new front port panel: remove the old drive by depressing the release tab, then pulling the drive out of the chassis.
- 4. Insert the new drive unit in the slot until the tab locks into place.
- 5. Connect the data and power cables to the backplane and, if necessary, serverboard.

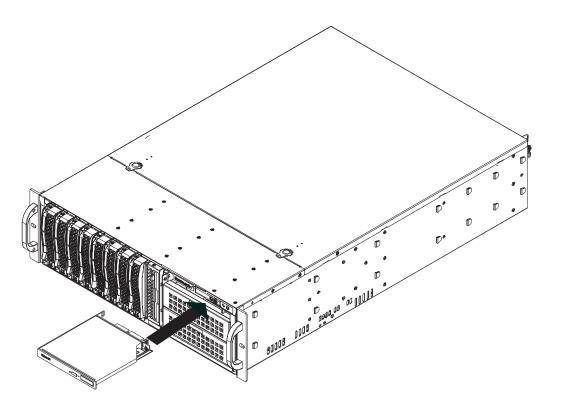


Figure 6-7. Installing the DVD-ROM Drive

6-6 Power Supply

The SuperServer 6037R-72RFT+ has a 1280 watt redundant power supply consisting of two power modules. Each power supply module has an auto-switching capability, which enables it to automatically sense and operate at a 100V - 240V input voltage.

Power Supply Failure

If either of the two power supply modules fail, the other module will take the full load and allow the system to continue operation without interruption. The PWR Fail LED will illuminate and remain on until the failed unit has been replaced. Replacement units can be ordered directly from Supermicro. The power supply units have a hot-swap capability, meaning you can replace the failed unit without powering down the system.

Replacing the Power Supply

You do not need to shut down the system to replace a power supply unit. The backup power supply module will keep the system up and running while you replace the failed hot-swap unit. Replace with the same model (see part number in the Appendix), which can be ordered directly from Supermicro.

Replacing the Power Supply

- The SC835 chassis includes a redundant power supply (at least two power modules), you can leave the server running if you remove only one power supply at a time.
- 2. Unplug the power supply that you will replace.
- 3. Push the release tab (on the back of the power supply) as illustrated.
- 4. Pull the power supply out using the handle provided.
- 5. Replace the failed power module with the same model.
- 6. Push the new power supply module into the power bay until you hear a click.
- 7. Plug the AC power cord back into the module and power up the server.

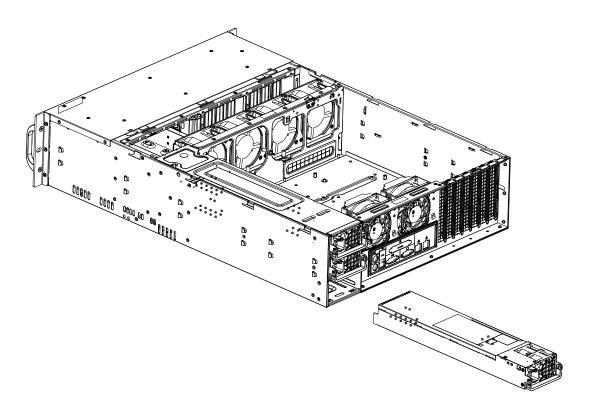


Figure 6-7. Installing a Battery Backup

Battery Backup

The battery backup module will supply power for a short period of time if all power is lost. Follow the same procedure for replacing power supply modules.

Notes

Chapter 7

BIOS

7-1 Introduction

This chapter describes the AMI BIOS Setup utility for the X9DR7-TF+. It also provides the instructions on how to navigate the AMI BIOS Setup utility screens. The AMI ROM BIOS is stored in a Flash EEPROM and can be easily updated.

Starting BIOS Setup Utility

To enter the AMI BIOS Setup utility screens, press the key while the system is booting up.

Note: In most cases, the key is used to invoke the AMI BIOS setup screen. There are a few cases when other keys are used, such as <F3>, <F4>, etc.

Each main BIOS menu option is described in this manual. The Main BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured. Options in blue can be configured by the user. The right frame displays the key legend. Above the key legend is an area reserved for informational text. When an option is selected in the left frame, it is highlighted in white. Often informational text will accompany it.

Note: The AMI BIOS has default informational messages built in. The manufacturer retains the option to include, omit, or change any of these messages.

The AMI BIOS Setup utility uses a key-based navigation system called "hot keys." Most of the AMI BIOS setup utility "hot keys" can be used at any time during setup navigation. These keys include <F3>, <F4>, <Enter>, <ESC>, arrow keys, etc.

Note 1: Options printed in **Bold** are default settings.

Note 2: <F3> is used to load optimal default settings. <F4> is used to save the settings and exit the setup utility.

How To Change the Configuration Data

The configuration data that determines the system parameters may be changed by entering the AMI BIOS Setup utility. This Setup utility can be accessed by pressing <Delete> at the appropriate time during system boot.

Note: For AMI UEFI BIOS Recovery, please refer to the UEFI BIOS Recovery User Guide posted @http://www.supermicro.com/support/manuals/.

Starting the Setup Utility

Normally, the only visible Power-On Self-Test (POST) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the AMI BIOS Setup utility. From the main menu, you can access the other setup screens. An AMI BIOS identification string is displayed at the left bottom corner of the screen below the copyright message.

Warning! Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall the manufacturer be liable for direct, indirect, special, incidental, or consequential damage arising from a BIOS update. If you have to update the BIOS, do not shut down or reset the system while the BIOS is being updated to avoid possible boot failure.

7-2 Main Setup

When you first enter the AMI BIOS Setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS Setup screen is shown below.

The AMI BIOS Main menu displays the following information:

System Date/System Time

Use this option to change the system time and date. Highlight *System Time* or *System Date* using the arrow keys. Enter new values through the keyboard and press <Enter>. Press the <Tab> key to move between fields. The date must be entered in Day MM/DD/YY format. The time is entered in HH:MM:SS format. (**Note:** The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00.).

Supermicro X9DR7-TF+

Version

This item displays the SMC version of the BIOS ROM used in this system.

Build Date

This item displays the date that the BIOS Setup utility was built.


Memory Information

Total Memory

This displays the amount of memory that is available in the system.

7-3 Advanced Setup Configurations

Select the Advanced tab to access the following submenu items.

▶Boot Features

Quiet Boot

This feature allows the user to select bootup screen display between POST messages and the OEM logo. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and Disabled.

AddOn ROM Display Mode

Use this item to set the display mode for the Option ROM. Select Keep Current to use the current AddOn ROM Display setting. Select Force BIOS to use the Option ROM display mode set by the system BIOS. The options are **Force BIOS** and Keep Current.

Bootup Num-Lock

Use this feature to set the Power-on state for the Numlock key. The options are Off and **On**.

Wait For 'F1' If Error

Select Enabled to force the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and **Enabled**.

Interrupt 19 Capture

Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Enabled, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Disabled, the ROM BIOS of the host adaptors will not capture Interrupt 19, and the drives attached to these adaptors will not function as bootable devices. The options are **Enabled** and Disabled.

Power Configuration

Watch Dog Function

If enabled, the Watch Dog timer will allow the system to reboot when it is inactive for more than 5 minutes. The options are Enabled and **Disabled.**

Power Button Function

If this feature is set to Instant Off, the system will power off immediately as soon as the user presses the power button. If this feature is set to 4 Seconds Override, the system will power off when the user presses the power button for 4 seconds or longer. The options are **Instant Off** and 4 Seconds Override.

Restore on AC Power Loss

Use this feature to set the power state after a power outage. Select Stay Off for the system power to remain off after a power loss. Select Power On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last state before a power loss. The options are Power On, Stay Off, and Last State.

▶CPU Configuration

This submenu displays the information of the CPU as detected by the BIOS. It also allows the user to configure CPU settings.

► Socket 1 CPU Information/Socket 2 CPU Information

This submenu displays the following information regarding the CPUs installed in Socket 1/ Socket 2.

- Type of CPU
- CPU Signature
- Microcode Patch

- CPU Stepping
- Maximum CPU Speed
- Minimum CPU Speed
- Processor Cores
- Intel HT (Hyper-Threading) Technology
- Intel VT-x Technology
- Intel SMX Technology
- L1 Data Cache
- L1 Code Cache
- L2 Cache
- L3 Cache

CPU Speed

This item displays the speed of the CPU installed in Socket 1/Socket 2.

64-bit

This item indicates if the CPU installed in Socket 1 or Socket 2 supports 64-bit technology.

Clock Spread Spectrum

Select Enable to enable Clock Spectrum support, which will allow the BIOS to monitor and attempt to reduce the level of Electromagnetic Interference caused by the components whenever needed. The options are **Disabled** and Enabled.

RTID (Record Types IDs)

This feature displays the total number of Record Type IDs for local and remote pools. The options are **Optimal** and Alternate.

Hyper-threading

Select Enabled to support Intel Hyper-threading Technology to enhance CPU performance. The options are **Enabled** and Disabled.

Active Processor Cores

Set to Enabled to use a processor's second core and above. (Please refer to Intel's website for more information.) The options are **All**, 1, 2, 4 and 6.

Limit CPUID Maximum

This feature allows the user to set the maximum CPU ID value. Enable this function to boot the legacy operating systems that cannot support processors with extended CPUID functions. The options are Enabled and **Disabled** (for the Windows OS).

Execute-Disable Bit (Available if supported by the OS & the CPU)

Select Enabled to enable the Execute Disable Bit which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor or damage the system during an attack. The default is **Enabled**. (Refer to Intel and Microsoft Web sites for more information.)

Intel® AES-NI

Select Enable to use the Intel Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are **Enabled** and Disabled.

MLC Streamer Prefetcher (Available when supported by the CPU)

If set to Enabled, the MLC (mid-level cache) streamer prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Disabled and **Enabled**.

MLC Spatial Prefetch (Available when supported by the CPU)

If this feature is set to Disabled, The CPU prefetches the cache line for 64 bytes. If this feature is set to Enabled the CPU fetches both cache lines for 128 bytes as comprised. The options are Disabled and **Enabled**.

DCU Streamer Prefetcher (Available when supported by the CPU)

Select Enabled to support Data Cache Unit (DCU) prefetch of L1 data to speed up data accessing and processing in the DCU to enhance CPU performance. The options are Disabled and **Enabled**.

DCU IP Prefetcher

Select Enabled for DCU (Data Cache Unit) IP Prefetcher support, which will prefetch IP addresses to improve network connectivity and system performance. The options are **Enabled** and Disabled.

Intel® Virtualization Technology (Available when supported by the CPU)

Select Enabled to support Intel Virtualization Technology, which will allow one platform to run multiple operating systems and applications in independent partitions, creating multiple "virtual" systems in one physical computer. The options are **Enabled** and Disabled.

Note: If there is any change to this setting, you will need to power off and restart the system for the change to take effect. Please refer to Intel's website for detailed information.)

▶ CPU Power Management Configuration

This submenu allows the user to configure the following CPU Power Management settings.

Power Technology

Select Energy Efficiency to support power-saving mode. Select Custom to customize system power settings. Select Disabled to disable power-saving settings. The options are Disabled, **Energy Efficient**, and Custom. If the option is set to Custom, the following items will display:

EIST (Available when Power Technology is set to Custom)

EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disabled, and **Enabled**

Turbo Mode (Available when Power Technology is set to Custom)

Select Enabled to use the Turbo Mode to boost system performance. The options are **Enabled** and Disabled.

C1E (Available when Power Technology is set to Custom)

Select Enabled to enable Enhanced C1 Power State to boost system performance. The options are **Enabled** and Disabled.

CPU C3 Report (Available when Power Technology is set to Custom)

Select Enabled to allow the BIOS to report the CPU C3 State (ACPI C2) to the operating system. During the CPU C3 State, the CPU clock generator is turned off. The options are Enabled and **Disabled.**

CPU C6 Report (Available when Power Technology is set to Custom)

Select Enabled to allow the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all cache is turned off. The options are **Enabled** and Disabled.

CPU C7 Report (Available when Power Technology is set to Custom)

Select Enabled to allow the BIOS to report the CPU C7 State (ACPI C3) to the operating system. CPU C7 State is a processor-specific low C-State. The options are **Enabled** and Disabled.

Package C-State limit (Available when Power Technology is set to Custom)

This feature allows the user to set the limit on the C-State package register. The options are C0, C2, **C6**, and No Limit.

Energy/Performance Bias

Use this feature to select an appropriate fan setting to achieve maximum system performance (with maximum cooling) or maximum energy efficiency with maximum power saving). The fan speeds are controlled by the firmware management via IPMI 2.0. The options are Performance, **Balanced Performance**, Balanced Energy, and Energy Efficient.

Factory Long Duration Power Limit

This item displays the power limit (in watts) set by the manufacturer during which long duration power is maintained.

Long Duration Power Limit

This item displays the power limit (in watts) set by the user during which long duration power is maintained. The default setting is 0.

Factory Long Duration Maintained

This item displays the period of time (in seconds) set by the manufacturer during which long duration power is maintained.

Long Duration Maintained

This item displays the period of time (in seconds) during which long duration power is maintained. The default setting is 0.

Recommended Short Duration Power Limit

This item displays the short duration power settings (in watts) recommended by the manufacturer.

Short Duration Power Limit

During Turbo Mode, the system may exceed the processors default power setting and exceed the Short Duration Power limit. By increasing this value, the processor can provide better performance for short duration. This item displays the time period during which short duration power is maintained. The default setting is 0.

▶Chipset Configuration

► North Bridge

This feature allows the user to configure the settings for the Intel North Bridge.

►Integrated IO Configuration

Intel® VT-d

Select Enabled to enable Intel Virtualization Technology support for Direct I/O VT-d by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI Tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are **Enabled** and Disabled.

Intel® I/OAT

Select Enabled to enable Intel I/OAT (I/O Acceleration Technology), which significantly reduces CPU overhead by leveraging CPU architectural improvements and freeing the system resource for other tasks. The options are Disabled and **Enabled**.

DCA Support

When set to Enabled, this feature uses Intel's DCA (Direct Cache Access) Technology to improve data transfer efficiency. The default is **Enabled** and can not be changed.

IIO 1 PCIe Port Bifurcation Control

This submenu configures the following IO PCIe Port Bifurcation Control settings for IIO 1 PCIe ports to determine how the available PCI-Express lanes to be distributed between the PCI-Exp. Root Ports.

CPU1 Slot 4 PCI-E 3.0 x8 Link Speed

This feature allows the user to set the PCI-Exp bus speed for the slot specified above. The options are Gen1 (Generation 1), Gen2 and **Gen3**.

CPU1 Slot 1 PCI-E 3.0 x8 Link Speed

This feature allows the user to set the PCI-Exp bus speed for the slot specified above. The options are Gen1 (Generation 1), Gen2 and **Gen3**.

CPU1 Slot 2 PCI-E 3.0 x8 Link Speed

This feature allows the user to set the PCI-Exp bus speed for the slot specified above. The options are Gen1 (Generation 1), Gen2 and **Gen3**.

IIO 2 PCIe Port Bifurcation Control

This submenu configures the following IO PCIe Port Bifurcation Control settings for IIO 2 PCIe ports to determine how the available PCI-Express lanes to be distributed between the PCI-Exp. Root Ports.

CPU2 Slot 6 PCI-E 3.0 x8 Link Speed

This feature allows the user to set the PCI-Exp bus speed for the slot specified above. The options are Gen1 (Generation 1), Gen2 and **Gen3**.

CPU2 Slot 5 PCI-E 3.0 x16 Link Speed

This feature allows the user to set the PCI-Exp bus speed for the slot specified above. The options are Gen1 (Generation 1), Gen2 and **Gen3**.

CPU2 Slot 3 PCI-E 3.0 x16 Link Speed

This feature allows the user to set the PCI-Exp bus speed for the slot specified above. The options are Gen1 (Generation 1), Gen2 and **Gen3**.

▶QPI Configuration

Current QPI Link

This item displays the current status of the QPI Link.

Current QPI Frequency

This item displays the frequency of the QPI Link.

Isoc

Select Enabled to enable Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for virtualization technology. The options are Enabled and **Disabled**.

QPI (Quick Path Interconnect) Link Speed Mode

Use this feature to select data transfer speed for QPI Link connections. The options are **Fast** and Slow.

QPI Link Frequency Select

Use this feature to select the desired QPI frequency. The options are **Auto**, 6.4 GT/s, 7.2 GT/s, and 8.0 GT/s.

▶ DIMM Configuration

This section displays the following DIMM information.

Current Memory Mode

This item displays the current memory mode.

Current Memory Speed

This item displays the current memory speed.

Mirroring

This item displays if memory mirroring is supported by the motherboard. Memory mirroring creates a duplicate copy of the data stored in the memory to enhance data security.

Sparing

This item displays if memory sparing is supported by the motherboard. Memory sparing enhances system performance.

▶ DIMM Information

The status of the memory modules detected by the BIOS will be displayed as detected by the BIOS.

Memory Mode

When Independent is selected, all DIMMs are available to the operating system. When Mirroring is selected, the motherboard maintains two identical copies of all data in memory for data backup. When Lock Step is selected, the motherboard uses two areas of memory to run the same set of operations in parallel. The options are **Independent**, Mirroring, and Lock Step.

DRAM RAPL Mode

RAPL (Running Average Power Limit) provides mechanisms to enforce power consumption limits on supported processors The options are DRAM RAPL MODE1, and Disabled.

Memory Energy/Performance

Use this feature to determine the parameters for memory module energy consumption. Select Performance to maintian optimal functionality or select Energy Saving to reduce power consumption. The options are **Performance** and Energy Saving.

DDR Speed

Use this feature to force a DDR3 memory module to run at a frequency other than what is specified in the specification. The options are **Auto**, Force DDR3-800, Force DDR3-1066, Force DDR3-1333, Force DDR3-1600 and Force SPD.

Channel Interleaving

This feature selects from the different channel interleaving methods. The options are **Auto**, 1 Way, 2 Way, 3, Way, and 4 Way.

Rank Interleaving

This feature allows the user to select a rank memory interleaving method. The options are **Auto**, 1 Way, 2 Way, 4, Way, and 8 Way.

Patrol Scrub

Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected on a memory module and send the correction to the requestor (the original source). When this item is set to Enabled, the IO hub will read and write back one cache line every 16K cycles, if there is no delay caused by internal processing. By using this method, roughly 64 GB of memory behind the IO hub will be scrubbed every day. The options are **Enabled** and Disabled.

Demand Scrub

Demand Scrubbing is a process that allows the CPU to correct correctable memory errors found on a memory module. When the CPU or I/O issues a demand-read command, and the read data from memory turns out to be a correctable error, the error is corrected and sent to the requestor (the original source). Memory is updated as well. Select Enabled to use Demand Scrubbing for ECC memory correction. The options are Enabled and **Disabled**.

Data Scrambling

Select Enabled to enable data scrambling to ensure data security and integrity. The options are Disabled and **Enabled**.

Device Tagging

Select Enabled to support device tagging. The options are **Disabled** and Enabled.

Thermal Throttling

Throttling improves reliability and reduces power consumption in the processor via automatic voltage control during processor idle states. The options are Disabled and **CLTT** (Closed Loop Thermal Throttling).

▶ South Bridge Configuration

This feature allows the user to configure the settings for the Intel PCH chip.

PCH Information

This feature displays the following PCH information.

Name: This item displays the name of the PCH chip.

Stepping: This item displays the status of the PCH stepping.

USB Devices: This item displays the USB devices detected by the BIOS.

All USB Devices

This feature enables all USB ports/devices. The options are Disabled and **Enabled**. (If set to Enabled, EHCI Controller 1 and Controller 2 will appear.)

EHCI Controller 1/EHCI Controller 2 (Available when All USB Devices is set to Enabled)

Select Enabled to enable EHCI (Enhanced Host Controller Interface) Controller 1 or Controller 2. The options are Disabled and **Enabled**.

Legacy USB Support (Available when USB Functions is not Disabled)

Select Enabled to support legacy USB devices. Select Auto to disable legacy support if USB devices are not present. Select Disabled to have USB devices available for EFI (Extensive Firmware Interface) applications only. The settings are Disabled, **Enabled** and Auto.

Port 60/64 Emulation

Select Enabled to enable I/O port 60h/64h emulation support for the legacy USB keyboard so that it can be fully supported by the operating systems that does not recognize a USB device. The options are Disabled and **Enabled**.

EHCI Hand-Off

This item is for operating systems that do not support Enhanced Host Controller Interface (EHCI) hand-off. When enabled, EHCI ownership change will be claimed by the EHCI driver. The options are **Disabled** and Enabled.

▶SATA Configuration

When this submenu is selected, the AMI BIOS automatically detects the presence of IDE or SATA devices and displays the following items.

SATA Port0~SATA Port5: The AMI BIOS displays the status of each SATA port as detected by the BIOS.

SATA Mode

Use this feature to configure SATA mode for a selected SATA port. The options are Disabled, IDE Mode, **AHCI Mode** and RAID Mode. The following are displayed depending on your selection:

IDE Mode

The following items are displayed when IDE Mode is selected:

Serial-ATA (SATA) Controller 0~1

Use this feature to activate or deactivate the SATA controller, and set the compatibility mode. The options for SATA Controller 0 are Disabled, Enhanced, and **Compatible**. The options for SATA Controller 1 are Disabled and **Enhanced**.

AHCI Mode

The following items are displayed when the AHCI Mode is selected.

Aggressive Link Power Management

When Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link in a low power mode during extended periods of I/O inactivity, and will return the link to an active state when I/O activity resumes. The options are **Enabled** and Disabled.

Port 0~5 Hot Plug

Select Enabled to enable hot-plug support for a particular port, which will allow the user to change a hardware component or device without shutting down the system. The options are **Enabled** and Disabled.

Staggered Spin Up

Select Enabled to enable Staggered Spin-up support to prevent excessive power consumption caused by multiple HDDs spinning-up simultaneously. The options are Enabled and **Disabled**.

RAID Mode

The following items are displayed when RAID Mode is selected:

Port 0~5 Hot Plug

Select Enabled to enable hot-plug support for the particular port. The options are **Enabled** and Disabled.

▶ PCIe/PCI/PnP Configuration

Launch Storage OpROM Priority

In case of multiple Option ROMs (Legacy and UEFI-compatible), this feature specifies what ROM to launch. The options are UEFI only and **Legacy only**.

PCI Latency Timer

Use this feature to set the latency Timer of each PCI device installed on a PCI bus. Select 64 to set the PCI latency to 64 PCI clock cycles. The options are 32, **64**, 96, 128, 160, 192, 224 and 248.

PERR# Generation

Select Enabled to allow a PCI device to generate a PERR number for a PCI Bus Signal Error Event. The options are Enabled and **Disabled**.

SERR# Generation

Select Enabled to allow a PCI device to generate an SERR number for a PCI Bus Signal Error Event. The options are Enabled and **Disabled**.

Maximum Payload

Select Auto to allow the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes and 256 Bytes.

Maximum Read Request

Select Auto to allow the system BIOS to automatically set the maximum Read Request size for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes, 256 Bytes, 512 Bytes, 1024 Bytes, 2048 Bytes, and 4096 Bytes.

ASPM Support

This feature allows the user to set the Active State Power Management (ASPM) level for a PCI-E device. Select Force L0s to force all PCI-E links to operate at L0s state. Select Auto to allow the system BIOS to automatically set the ASPM level for the system. Select Disabled to disable ASPM support. The options are **Disabled**, Force L0s, and Auto.

Warning: Enabling ASPM support may cause some PCI-E devices to fail!

Above 4G Decoding (Available if the system supports 64-bit PCI decoding)

Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Enabled and **Disabled**.

CPU1 Slot 1 PCI-E 3.0 x8 OPROM, CPU1 Slot 2 PCI-E 3.0 x8 OPROM, CPU2 Slot 3 PCI-E 3.0 x16 OPROM, CPU1 Slot 4 PCI-E 3.0 x8 OPROM, CPU2 Slot 5 PCI-E 3.0 x16 OPROM, CPU2 Slot 6 PCI-E 3.0 x 8 OPROM

Select Enabled to enable Option ROM support to boot the computer using a device installed on a slot specified above. The options are **Enabled** and Disabled.

Onboard LAN Option ROM Select

Select iSCSI to use the iSCSI Option ROM to boot the computer using a network device. Select PXE (Preboot Execution Environment) to use an PXE Option ROM to boot the computer using a network device. Select FCoE (Fiber Channel over Ethernet) to use a FCoE Option ROM to boot the computer using a network device. The options are iSCSI and **PXE**, and FCoE.

Load Onboard LAN1 Option ROM/Load Onboard LAN2 Option ROM

Select Enabled to enable the onboard LAN1 Option ROM~LAN2 Option ROM. This is to boot the computer using a network device. The default setting for LAN1 Option ROM is **Enabled**, and the default setting for LAN2 Option ROM is **Disabled**.

Load Onboard SAS Option ROM

Select Enabled to use the onboard SAS Option ROM to boot the computer using a SAS device. The options are **Enabled** and Disabled.

VGA Priority

This feature allows the user to select the graphics adapter to be used as the primary boot device. The options are **Onboard**, and Offboard.

Network Stack

Select Enabled enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Enabled and **Disabled**.

▶Super IO Configuration

Super IO Chip: This item displays the Super IO chip used in the motherboard.

► Serial Port 1 Configuration

Serial Port

Select Enabled to enable a serial port specified by the user. The options are **Enabled** and Disabled.

Device Settings

This item displays the settings of Serial Port 1.

Change Settings

This option specifies the base I/O port address and the Interrupt Request address of Serial Port 1 (COM). Select Disabled to prevent the serial port from accessing any system resources. When this option is set to Disabled, the serial port becomes unavailable. The options are **Auto**, IO=3F8h; IRQ=4; IO=3F8h; IRQ=3; IO=2F8h; IRQ=3; IO=2E8h; IRQ=5; IO=2E8h; IRQ=7; IO=3F8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=3E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; and IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12;

Device Mode

Use this feature to select the desired mode for a serial port specified. The options are **Normal** and High Speed.

► Serial Port 2 Configuration

Serial Port

Select Enabled to enable a serial port specified by the user. The options are **Enabled** and Disabled.

Device Settings

This item displays the settings of the SOL Port.

Change Settings

This option specifies the base I/O port address and the Interrupt Request address of Serial Port 1 (COM). Select Disabled to prevent the serial port from accessing any system resources. When this option is set to Disabled, the serial port becomes unavailable. The options are **Auto**, IO=3F8h; IRQ=4; IO=3F8h; IRQ=3; IO=2F8h; IRQ=3; IO=2E8h; IRQ=5; IO=2E8h; IRQ=7; IO=3F8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=3E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; and IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12;

Device Mode

Use this feature to select the desired mode for a serial port specified. The options are **Normal** and High Speed.

Serial Port 2 Attribute

Use this feature to select the attribute for this serial port. The options are **SOL** (Serial Over LAN), and COM.

► Serial Port Console Redirection

COM1, COM2

These two submenus allow the user to configure the following Console Redirection settings for a COM Port specified by the user.

Console Redirection

Select Enabled to use a COM Port selected by the user for Console Redirection. The options are Enabled and Disabled. The default setting for COM1 is **Disabled**, and for COM2 is **Enabled**.

▶ Console Redirection Settings

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per second

Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second).

Data Bits

Use this feature to set the data transmission size for Console Redirection. The options are 7 Bits and 8 Bits.

Parity

A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space.

Stop Bits

A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are 1 and 2.

Flow Control

This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS.

VT-UTF8 Combo Key Support

Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are **Enabled** and Disabled.

Recorder Mode

Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and Enabled.

Resolution 100x31

Select Enabled for extended-terminal resolution support. The options are Disabled and **Enabled**.

Legacy OS Redirection Resolution

Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25.

Putty KeyPad

This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, LINUX, XTERMR6, SCO, ESCN, and VT400.

Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS)

The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management.

Console Redirection (for EMS)

Select Enabled to use a COM Port selected by the user for Console Redirection. The options are Enabled and **Disabled**.

▶ Console Redirection Settings (for EMS)

This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user.

Out-of-Band Management Port

The feature selects a serial port used by the Microsoft Windows Emergency Management Services (EMS) to communicate with a remote server. The options are **COM1** and COM2.

Terminal Type

This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8.

Bits Per Second

This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and **115200** (bits per second).

Flow Control

This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS, and Software Xon/Xoff.

Data Bits, Parity, Stop Bits

The status of these features is displayed.

▶ACPI Settings

Use this feature to configure Advanced Configuration and Power Interface (ACPI) power management settings for your system.

ACPI Sleep State

Use this feature to select the ACPI State when the system is in sleep mode. Select S1 (CPU Stop Clock) to erase all CPU caches and stop executing instructions. Power to the CPU(s) and RAM is maintained, but RAM is refreshed. Select Suspend Disabled to use power-reduced mode. Power will only be supplied to limited components (such as RAMs) to maintain the most critical functions of the system. The options are **S1 (CPU Stop Clock)** and Suspend Disabled.

NUMA (NON-Uniform Memory Access)

This feature enables the Non-Uniform Memory Access ACPI support. The options are **Enabled** and Disabled.

High Precision Event Timer

Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback, reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are **Enabled** and Disabled.

► Trusted Computing (Available when a TPM device is detected by the BIOS)

Configuration

TPM Support

Select Enabled on this item and enable the TPM jumper on the motherboard to enable TPM support to improve data integrity and network security. The options are **Enabled** and Disabled.

TPM State

Select Enabled to enable TPM security settings to improve data integrity and network security. The options are Disabled and **Enabled**.

Pending Operation

Use this item to schedule an operation for the security device. The options are **None**, Enable Take Ownership, Disable Take Ownership, and TPM Clear.

Note: During restart, the computer will reboot in order to execute the pending operation and change the state of the security device.

Current Status Information: This item displays the information regarding the current TPM status.

TPM Enable Status

This item displays the status of TPM Support to indicate if TPM is currently enabled or disabled.

TPM Active Status

This item displays the status of TPM Support to indicate if TPM is currently active or deactivated.

TPM Owner Status

This item displays the status of TPM Ownership.

►Intel TXT (LT-SX) Configuration

Intel TXT (LT-SX) Hardware Support

This feature indicates if the following hardware components support the Intel Trusted Execution Technology.

CPU: TXT (Trusted Execution Technology) Feature

Chipset: TXT (Trusted Execution Technology) Feature

Intel TXT (LT-SX) Configuration

This feature displays the following TXT configuration setting.

TXT (LT-SX) Support: This item indicates if the Intel TXT support is enabled or disabled. The default setting is **Disabled**.

Intel TXT (LT-SX) Dependencies

This feature displays the features that need to be enabled for the Intel Trusted Execution Technology to work properly in the system.

VT-d Support: Intel Virtualization Technology with Direct I/O support

VT Support: Intel Virtualization Technology support

TPM Support: Trusted Platform support

TPM State: Trusted Platform state

► ME Subsystem

This feature displays the following ME Subsystem Configuration settings.

ME BIOS Interface Version

ME Version

iSCSI Configuration: This item displays iSCSI configuration information:

iSCSI Initiator Name

This item displays the name of the iSCSI Initiator, which is a unique name used in the world. The name must use IQN format. The following actions can also be performed:

- Add an Attempt
- Delete Attempts
 - Commit/Discard Changes and Exit
- Change Attempt Order
 - Commit/Discard Changes and Exit

Intel® Ethernet Controller 10 Gigabit: These items display the following information on the Intel 10 Gigabit X connections.

▶NIC Configuration

Link Speed

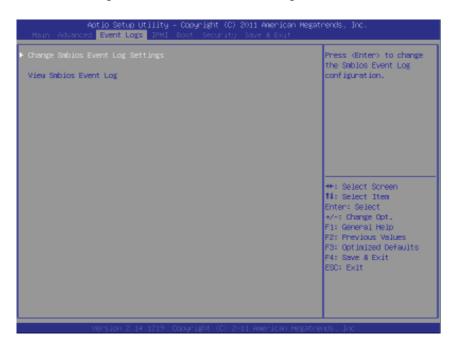
Use this feature to change the link speed and duplex for the current port. This feature cannot currently be changed using the BIOS.

Wake on LAN

Wake on LAN is currently not supported for the 10 Gigabit LAN.

Blink LEDs

This feature allows the user to specify the duration for LEDs to blink. The range is from $0 \sim 15$ seconds. The default setting is $\mathbf{0}$.


PORT CONFIGURATION INFORMATION

This section displays the following port information:

- UEFI Driver
- Adapter PBA
- Chip Type
- PCI Device ID
- PCI Bus:Device:Function
- Link Status
- Factory MAC Address / Alternate MAC Address

7-4 Event Logs

Select the Event Logs tab to access the following submenu items.

▶ Change SMBIOS Event Log Settings

This feature allows the user to configure SMBIOS Event settings.

Enabling/Disabling Options

SMBIOS Event Log

Select Enabled to enable SMBIOS (System Management BIOS) Event Logging during system boot. The options are **Enabled** and Disabled.

Runtime Error Logging Support

Select Enabled to support Runtime Error Logging. The options are **Enabled** and Disabled.

Memory Correctable Error Threshold

This feature allows the user to enter the threshold value for correctable memory errors. The default setting is **10**.

PCI Error Logging Support

Select Enabled to support error event logging for PCI slots. The options are Enabled and **Disabled**.

Erasing Settings

Erase Event Log

Select Enabled to erase the SMBIOS (System Management BIOS) Event Log, which is completed before a event logging is initialized upon system reboot. The options are **No**, Yes, Next reset, and Yes, Every reset.

When Log is Full

Select Erase Immediately to immediately erase SMBIOS error event logs that exceed the limit when the SMBIOS event log is full. Select Do Nothing for the system to do nothing when the SMBIOS event log is full. The options are **Do Nothing** and Erase Immediately.

SMBIOS Event Log Standard Settings

Log System Boot Event

Select Enabled to log system boot events. The options are **Disabled** and Enabled.

MECI (Multiple Event Count Increment)

Enter the increment value for the multiple event counter. Enter a number from 1 to 255. The default setting is **1**.

METW (Multiple Event Count Time Window)

This item allows the user to decide how long (in minutes) should the multiple event counter wait before generating a new event log. Enter a number from 0 to 99. The default setting is **60**.

View SMBIOS Event Log

This item allows the user to view the event in the SMBIOS event log. Select this item and press <Enter> to view the status of an event in the log.

Date/Time/Error Code/Severity

View System Event Log

This item allows the user to view the event in the system event log. Select this item and press <Enter> to view the status of an event in the log.

Date/Time/Error Code/Severity

7-5 IPMI

Select the IPMI (Intelligent Platform Management Interface) tab to access the following submenu items.

IPMI Firmware Revision

This item indicates the IPMI firmware revision used in your system.

IPMI Status

This item indicates the status of the IPMI firmware installed in your system.

►System Event Log

Enabling/Disabling Options

SEL Components

Select Enabled for all system event logging at bootup. The options are **Enabled** and Disabled.

Erasing Settings

Erase SEL

Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are **No**, Yes, On next reset, and Yes, On every reset.

When SEL is Full

This feature allows the user to decide what the BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are **Do Nothing** and Erase Immediately.

Custom EFI Logging Options

Log EFI Status Codes

Select Enabled to log EFI (Extensible Firmware Interface) Status Codes, Error Codes or Progress Codes. The options are **Enabled** and Disabled.

Note: After making changes on a setting, be sure to reboot the system for the changes to take effect.

▶BMC Network Configuration

LAN Channel 1: This feature allows the user to configure the settings for LAN1 Port.

Update IPMI LAN Configuration

This feature allows the BIOS to implement any IP/MAC address changes at the next system boot. If the option is set to Yes, any changes made to the settings below will take effect when the system is rebooted. The options are **No** and Yes.

Configuration Address Source

This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are **DHCP** and Static. The following items are assigned IP addresses automatically if DHCP is selected, or can be configured manually if Static is selected.

Station IP Address

This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

Subnet Mask

This item displays the sub-network that this computer belongs to. The value of each three-digit number separated by dots should not exceed 255.

Station MAC Address

This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers.

Gateway IP Address

This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253).

7-6 Boot

This submenu allows the user to configure the following boot settings for the system.

Boot Option Priorities

Boot Option #1/ Boot Option #2/ Boot Option #3, etc.

Use this feature to specify the sequence of boot device priority.

Hard Disk Drives, Network Devices

Use these options to set the order of the legacy Network and Hard Disk Drive devices detected by the motherboard.

► Delete Boot Option

This feature allows the user to select a EFI boot device to delete from the boot priority list.

Delete Boot Option

Select the desired boot device to delete.

7-7 Security

This menu allows the user to configure the following security settings for the system.

Password Check

Use this feature to determine when a password entry is required. Select Setup to require the password only when entering setup. Select Always to require the password when entering setup and on each boot. The options are **Setup** and Always.

Administrator Password

Use this feature to set the Administrator Password which is required to enter the BIOS setup utility. The length of the password should be from 3 to 20 characters long.

7-8 Save & Exit

This submenu allows the user to configure the Save and Exit settings for the system.

Discard Changes and Exit

Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit, and press <Enter>. When the dialog box appears, asking you if you want to exit the BIOS setup without saving, select **Yes** to quit BIOS without saving the changes, or select No to quit the BIOS and save changes.

Save Changes and Reset

When you have completed the system configuration changes, select this option to save the changes and reboot the computer so that the new system configuration settings can take effect. Select Save Changes and Exit, and press <Enter>. When the dialog box appears, asking you if you want to exit the BIOS setup without saving, select **Yes** to quit BIOS without saving the changes, or select No to quit the BIOS and save changes.

Save Options

Save Changes

Select this option and press <Enter> to save all changes you've done so far and return to the AMI BIOS utility Program. When the dialog box appears, asking you if you want to save configuration, select **Yes** to save the changes, or select No to return to the BIOS without making changes.

Discard Changes

Select this feature and press <Enter> to discard all the changes and return to the BIOS setup. When the dialog box appears, asking you if you want to load previous values, select **Yes** to load the values previous saved, or select No to keep the changes you've made so far.

Restore Optimized Defaults

Select this feature and press <Enter> to load the optimized default settings that help optimize system performance. When the dialog box appears, asking you if you want to load optimized defaults, select **Yes** to load the optimized default settings, or select No to abandon optimized defaults.

Save as User Defaults

Select this feature and press <Enter> to save the current settings as the user's defaults. When the dialog box appears, asking you if you want to save values as user's defaults, select **Yes** to save the current values as user's default settings, or select No to keep the defaults previously saved as the user's defaults.

Restore User Defaults

Select this feature and press <Enter> to load the user's defaults previously saved in the system. When the dialog box appears, asking you if you want to restore user's defaults, select **Yes** to restore the user's defaults previously saved in the system, or select No to abandon the user's defaults that were previously saved.

Boot Override

This feature allows the user to override the Boot Option Priorities setting in the Boot menu, and instead boot the system with one of the listed devices. This is a one-time override.

Notes

Appendix A

BIOS Error Beep Codes

During the POST (Power-On Self-Test) routines, which are performed each time the system is powered on, errors may occur.

Non-fatal errors are those which, in most cases, allow the system to continue the boot-up process. The error messages normally appear on the screen.

Fatal errors are those which will not allow the system to continue the boot-up procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs.

These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list (on the following page) correspond to the number of beeps for the corresponding error. All errors listed, with the exception of Beep Code 8, are fatal errors.

Beep Code	Error Message	Description
1 beep	Refresh	Circuits have been reset (Ready to power up)
5 short beeps and 1 long beep	Memory error	No memory detected in the system
5 beeps	No Con-In or Con-Out devices	Con-In includes USB or PS/2 keyboard, PCI or serial console redirection, IPMI KVM or SOL. Con-Out includes video controller, PCI or serial console redirection, IPMI SOL.
1 Continuous beep	System OH	System Overheat

Notes

Appendix B

System Specifications

Processors

Single or dual Intel® Xeon E5-2600 Series processors

Note: Please refer to our web site for a complete listing of supported processors.

Chipset

Intel C600 chipset

BIOS

16 Mb AMI® SPI Flash ROM

Memory Capacity

Twenty-four DIMM sockets supporting up to 768 GB RDIMM, ECC LRDIMM or ECC/non-ECC UDIMM DDR3-1600/1333/1066/800 type memory

Note: see Section 5-6 for details.

Drive Bays

Eight hot-swap drive bays to house eight SAS or SATA drives

Peripheral Drive Bays

Two 5.25" drive bays

Expansion Slots

Two PCI-E 3.0 x16 slots and four PCI-E 3.0 x8 slots

Serverboard

X9DR7-TF+ (Extended ATX form factor)

Dimensions: 13.68 x 13 in (347 x 330 mm)

Chassis

SC835BTQ-R1K28BP (3U rackmount)

Dimensions: (WxHxD) 17.7 x 5.2 x 25.6 in. (450 x 132 x 650 mm)

Weight

Gross (Bare Bone): 75 lbs. (34 kg.)

System Cooling

Four 8-cm system fans and two 8-cm rear exhaust fans Optional GPU fan (with MCP-320-00046-0N-KIT kit)

System Input Requirements

AC Input Voltage: 180 - 240V AC auto-range

Rated Input Current: 8 - 6A max Rated Input Frequency: 50 to 60 Hz

Power Supply

Rated Output Power: 1280W (Part# PWS-1K28P-SQ)
Rated Output Voltages: +12V (106.7A), +5Vsb (4A)

Operating Environment

Operating Temperature: 10° to 35° C (32° to 95° F)

Non-operating Temperature: -40° to 60° C (-40° to 140° F)
Operating Relative Humidity: 20% to 95% (non-condensing)
Non-operating Relative Humidity: 5% to 95% (non-condensing)

Regulatory Compliance

Electromagnetic Emissions: FCC Class A, EN 55022 Class A, EN 61000-3-2/-3-3, CISPR 22 Class A

Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11)

Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and Canada), CE Marking (Europe)

California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate"

Notes

(continued from front)

The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.